
IllumiCore: Optimization Modeling and

Implementation for Efficient VNF Placement

Leo Popokh

HPE & SMU

Dallas, USA

leonid.i.popokh@hpe.com

Jing Su, Suku Nair, Eli Olinick

SMU AT&T Center for Virtualization

Dallas, USA

[suj, nair, olinick]@smu.edu

Abstract—Network Function Virtualization (NFV) enables

telecommunication operators to place and allocate resources

dynamically to address the needs of Internet of Things (IoT),

Intelligent Edge Computing (IEC) and emerging 5G services in a

highly efficient manner. The efficient Virtual Network Function

(VNF) placement and deployment largely depend on optimizing

Virtual Machines (VM) compute, storage, and network resource

allocation in the cloud-based platforms and their physical hosts.

This research further extends our previously defined Information

Model of mapped NFV Infrastructure (NFVI) and Virtualized

Infrastructure Management (VIM) resources to derive VNF’s

placement and optimal resource allocation. Our optimization

solution IllumiCore derives the VNF’s optimal placement and

minimizes the communication latency among VMs that are part of

the VNF and entire communication network. The results

demonstrate optimal and improved VNF placement and resource

management.

Keywords—NFV, VNF, VIM, NFVI, efficient VNF placement,

resource allocation and management, communication latencies

I. INTRODUCTION

The conventional Data Centers (DCs) and communication
network functions, such as routing, switching, firewall and load
balancers are traditionally hardware-based and allocated for
specific services. This reliance on hardware-based resources
results in various deployment and maintenance challenges (i.e.,
slowing down the introduction of new and emerging services,
increasing operating costs) [2]. The innovative methodologies
called NFV, and Software-Defined Networking (SDN) were
proposed by several world-leading telecommunication operators
in 2012 [3], [4] to address these challenges. NFV [5] allows
network operators to accelerate the deployment of new virtual
devices, called VNFs, in a more dynamic and automated
approach. VNFs play a vital role in today and future networks.
They support a diverse set of functions ranging from Enterprise
to Wireless networks. Optimizing the Compute, Storage, and
Networking {�, �, �} resources allocation in a coordinated way
between physical and virtual hosting devices for VNFs in an
NFV-based network architecture remains an open challenge [6].
The “Previous Work” section summarizes these challenges and
gaps. Our review recognizes that different schemes and
algorithms did not consider some essential parameters, such as
combining the {�, �, �} across physical and virtual platforms.
Efficient VNF placement is particularly challenging, mainly for
two reasons. First, depending on VNFs modeling, maturity, and
standards compliance, end-to-end (E2E) latencies may become
intolerable. Second, resource allocation is a cost and time-
effective task. {�, �, �} resources allocated to a VNF instance

will impact the latency and performance of the VNF and
corresponding Network Service (NS). Therefore, this paper
formulates and implements the comprehensive Optimization
Model and the Objective Function to minimize communication
latency between VNF Components (VNFC) and their
corresponding VMs based on the previously defined
Information Model (IM) [1] of mapped physical and virtual
resources to derive the hint for efficient VNF placement.

The rest of the paper is organized as follows. In Section II,

we give an overview of previous and related work. Section III

presents the optimization model with constraints and the

objective function, and Section IV describes the details of our

optimization solution. We discuss the complexity of VNF, VIM,

NFVI parameters and constraints and formulate the optimization

function as a constraint programming solution. We present use

cases and scenarios and the evaluation results of our solutions in

Section IV before concluding the paper in Section V.

II. PREVIOUS WORK

 The VNFs deployment and VM placement is a well-studied
and researched problem in the literature and industry due to its
importance for the telecommunication operators. This section
reviews the OpenStack approach for VM deployment,
placement techniques, algorithms, and various resource
allocation approaches introduced to realize it.

A. OpenStack

OpenStack [7], the popular open-source cloud operating
system, is established to control and manage the converged (i.e., {�, �, �} combined) resources. Even though OpenStack is a
mature software platform, the developers still should overcome
various challenges to orchestrate OpenStack resources and
services. For example, when utilizing the Infrastructure as a
Service (IaaS) resource provisioning, the developers need to
figure out where and how they create VMs. In placing VMs, the
default OpenStack resources schedulers (Nova, Heat, and
Ceilometer) only consider computing loads and do not consider
networking and storage conditions yet. The necessity of a
network-aware scheduler has been discussed in the OpenStack
community [8] and later in [24]. OpenStack Quality of Service
(QoS) defines the ability to guarantee specific network
requirements like bandwidth, latency, jitter, and reliability to
satisfy a Service Level Agreement (SLA) between an
application provider and end-users. Network devices such as
switches and routers can mark traffic to handle a higher priority
to fulfill the QoS conditions agreed under the SLA. In other
cases, specific network traffic such as Voice over IP (VoIP) and

video streaming must be transmitted with minimal bandwidth
constraints. On a system without network QoS management, all
traffic will be transmitted in a “best-effort” manner, making it
impossible to guarantee service delivery to customers. The
example of extended OpenStack architecture for a dynamic
resource allocation can be found in [9], where the authors
provide an extensible set of management objectives. The system
can switch at runtime during the process of resource allocation
for interactive and computationally intensive applications.
However, they do not address VNF deployment. In [10], the
authors propose modifications to OpenStack’s Nova scheduler
to solve the NFVI resources’ joint optimization problem. They
introduce constraints for the VNF deployment related to QoS,
fault-tolerance, and network topology redundancy, but they do
not discuss the interaction between OpenStack and the network
controller. IllumiCore enhances the OpenStack QoS approach
with optimal resource allocation based on the IM from VIM and
NFVI substrate layers and networks.

B. VNF Deployment

In [11], the authors present an optimization model for VNFs
deployment as part of Virtual Mobile Core Networks. They face
the problem of resource allocation for a core network service
chain as a combination of VNF. In this work, latency is a
combination of processing, packet queuing and propagation
delay. The first two variables depend on the traffic utilization of
the node the VNF is placed on, while the last one is a function
of the path length. The assumption is to know in advance the
precise input parameters, such as processing, packet queuing
and propagation delay, but it is not the case. Another paper, [12],
presents an Integer Linear Programming (ILP) model for VNF
orchestration. The model is solved to determine the optimal
number of VNFs and place them at the optimal locations to
optimize network operational cost and resource utilization. The
ILP model-based solution is suitable for small networks;
however, more extensive networks’ heuristics may not resemble
large production networks. The work in [14] investigates the
benefits of using two approaches: the NFV and SDN. The
proposed VNF placement objective minimizes the total network
load overhead by considering several parameters, such as the
data plane delay and the SDN control overhead. In [15], the
authors discuss applying constraint-based heuristics to deploy
VNFs for Evolved Packet Core services (EPC). They show the
results in terms of the average number of used CPU cores and
aggregate throughput for placement strategies. In [16], the
authors argue placing VNFs and learning algorithms for
efficient replacement over time. We find this a very inefficient
approach. It is challenging to reposition VNF after deployment
into production.

C. VM Placement Techniques

Proper VM placement helps improving network resources
efficiency, reduce communication delays and latency. Both [17]
and [18] consider VNF placement and steer traffic through NS,
while neither has the bandwidth and latency optimization. The
work in [19] only focuses on initial placement by minimizing
VM communication distance and setup cost, which ignores the
VNF scaling problem. In [20], authors build a network-aware
orchestration layer for virtual middleboxes. It considers a rack-
aware VM placement, while its elastic placement strategy brings
a lot of migration overhead. Perfect knowledge for all the

parameters is assumed in all those models and algorithms, and
optimal values are computed based on such precise input
assumptions. However, if input parameters later vary, the
optimal solution previously found may be infeasible, making
those approaches impractical.

Our approach addresses VM deployment and placement
techniques deficiencies. IllumiCore is modeling the {�, �, �}
efficient resource allocation for VNFs placement while
minimizing the communications latencies between VMs and
satisfying ETSI VNF operations (i.e., deploy, un-deploy, scale,
heal and operate). We consider physical and network topology
in the model, along with the compute and storage. Our approach
is, in comparison, a broader, optimal solution and offers efficient
and optimal placement of multiple VNF instances on-demand
and chain service functions.

III. OPTIMIZATION MODEL

IllumiCore’s mathematical optimization model attempts to
minimize the latency between VMs that are part of the VNF
without violating VNF, VIM and NFVI resource constraints.
The proposed IllumiCore optimization model, objective
function, algorithm, and resource allocation are proposed and
implemented for VNFs and later for NS functional blocks.

A. Optimization Model Definition

In our approach, we based the optimization model for
efficient VNF placement on the IM previously derived in [1].
“Fig. 1” describes the IM resources and substrate network
(NFVI) topology discovery. VNF ��	
 deployment request
(step #1) triggers the IM update from VIM and NFVI layers.
Requested VNF ��	
 will require certain number of virtual-and-
required resources:

���.� ∃ ����.�� , ���.�� , ���.�� � | ��
.� ∈ ��	�
.� ∈ ��	

Fig. 1. Information Model, resources and topology discovery

We discover all virtual resources from the VIM (step #3)
and define them as follows: ������.� ∃ {����.� , ����.� , ����.� } | �ℎ".� ∈ �#$. There exists

Compute Host �ℎ".� with capacity ������.� at each %&'" in

terms of virtual-and-available Compute - ����.� , Storage - ����.� and Network - ����.� , such that every Compute Host

(CH) �ℎ".� belongs to the set of �#". “TABLE II” (9, 10)

We discover all physical resources from NFVI (step #2)
and define them as follows: ���()�.� ∃ {�()�.�

*�+, �()�.�
*�+, �()�.�

*�+} | ���.� ∈ �� �"� . There exists

Physical Server ���.� with capacity ���()�.� at each %&'$ in

terms of Physical-and-Available Compute - �()�.�
*�+ , Storage -

�()�.�
*�+ and Network - �()�.�

*�+ , such that every server ���.� belongs

to the set of physical server in the rack - �� �"� . “TABLE III”

(23).

We describe IllumiCore’s optimization model mathematical
formulations with inputs (i.e., VNF deployment request: ���.� ∃ ����.�� , ���.�� , ���.�� � | ��
.� ∈ ��	�
.� ∈ ��	
 for

each virtual machine ��
.� requested to be deployed ���.� , there exists a set of virtual & required compute : ���-..
�/

,

storage: ���.�� and network : ���.�� , such that every virtual

machine ��
.� belongs to a VNFC ��	�
.� and each VNFC

belongs to a VNF - ��	
), constraints and objectives. IllumiCore
utilizes a constraint programming solution (step #4) to find the
optimal VNF placement and produce the hint to NFV
Orchestrators for VNF efficient and optimal deployment (step
#5). We analyze and relate physical and virtual information not
only in terms of compute nodes (i.e., VM to PM mapping) but
all the locations, distances, and network connectivity across both
physical and virtual resources as VNF building blocks.

Our objective function is to minimize the latency between
VMs that are part of the VNF:

'-�01�234�5 =
'-� 7∑ ∑ 9��.���:.; ∗ =�2>
3"?��.� ∃ 34��.� ∈ 34�>
3"? @

IllumiCore’s efficient placement algorithm generates the Hint

with optimal virtual {�, �, �} resources allocations for VNF

deployment - #-�2��.� ∃ {���.�
ABC , ���.�

ABC , ���.�
ABC } for each ��
.�

B. Optimization Model Formulations, Input, Constraints and

Objective

1) Optimization Model Input

TABLE I. VNF PARAMETERS

(1) There are many VNFs in the telecommunications operators’ networks, both

Enterprise and Wireless. Notation ��	
 represents the -C� VNF in set %�D %�D = {��	E, ��	F, . . . , ��	
, . . . , ��	3}

(2) There could be one or many (i.e., �) VNFs to be deployed at the same time.

The number of VNFs to be deployed is � = |%�D|
(3) Total resources required from the VIM for the � number of VNFs to be

deployed. �GHI = ∑ �34� , | ��	
 ∈ %�D3
JE

(4) �34� defines the total resources required for the single ��	
 deployment. �34� = ∑ �34��.� = ∑ ���.���JE��JE

where � is the total number of VNFCs and VMs for VNF ��	

(5) For each ��
.�, there are virtual-required resources: ���.�� : compute, ���.�� :

storage and ���.�� : Network

���.� ∃ ����.�� , ���.�� , ���.�� � | ��
.� ∈ ��	�
.� ∈ ��	
 ���.� defines the total resources required for ��
.� deployment

 (6) Placement Policy (Affinity / Anti-Affinity) for ��	
 deployment. K34� ={1, 2, 0 } ∈ �O=-�P

�O=-�P = Q1, affinity2, anti-affinity0, otherwise

(7) '�91�234� defines the Maximum Latency each ��	
 can tolerate

(8) '�91�2��.� defines the Maximum Latency each ��
.� can tolerate

TABLE II. VIM PARAMETERS

(9) There could be one or many VIMs in {�-�E, … , �-�" , … , �-�S} in the %&' set implemented across one or many data centers (DC): %&' = {�-�E, … , �-�", … , �-�S}.

CHs are defined per each VIM (i.e., �-�"). �-�" ∈ %&' and T = |{%&'}|
is the number of VIMs. CH is the abstract definition of a server in

OpenStack.

There is a set of �#" = U�ℎ".E, … , �ℎ".�, … , �ℎ".V as part of the �-�" and ℎ = |�#$| is the total number of CHs per individual �-�"

(10) CH �ℎ".� will have its capacity of virtual-available {C, S, N} resources

available for VM hosting/instantiation: ������.� ∃ {����.� , ����.� , ����.� } | �ℎ".� ∈ �#"

TABLE III. NFVI PARAMETERS

(11) Set of Datacenters: W� = {X�E, … , X�
, … , X�Y}

(12) Physical rack in the X�
: �Z�[Y�� = {/Y��.\ , … , /Y��.� , … , /Y��.)}

(13) Total number of racks across all DCs: /��]^CAC > = ∑ |X�
||_`|
JE

(14) Set of physical servers enclosed in the Rack with the single Top of the Rack

(TOR). There could be one or many servers in the rack: �� �"� =
�^��.\ , … , ^��.� , … , ^��.a�, /��]
 is from �Z�[Y�� set

(15) Number of servers per rack: �b�cd�)ef� = |�� �"�|
(16) Total number of servers: ^g/�g/^CAC > = �b�cd�)ef� ∗ /��]^CAC >
(17) There is a set of TORs per X�
.�: hi�Y�� = {2O/Y��.\ , … , 2O/Y��.� , … , 2O/Y��.�}

(19) Set of aggregation Switches per DC X�
.�:
�{+||Y��.� = }^T ~~Y��.\ , … , ^T ~~Y��.� , … , ^T ~~Y��.��

(20) Number of the sw_agg per DC X�
 : �b�cS_ ~~�f� = |�{_Z��Y��.�|
(22) ^T�A�d = 1 Core Switch.

There is one active Core Switch in the DC architecture.

(23) Each DC’s X�
 physical Server will have its Physical-Available {C, S, N}

resources: ���()�.� ∃ {�()�.�
*�+, �()�.�

*�+, �()�.�
*�+} | ���.� ∈ �� �"�

TABLE IV. OTHER VARIABLE & PARAMETERS

(24) Binary decision variable denoting if VM ��
.� is deployed on the CH �ℎ$.� ∶
9��.���:.� = }1, if ��
.� is allocated to �ℎ$.� 0, otherwise

(25) Total time for ��	
 resource allocation: h�;���

(26) Size of the problem: i.e., number of DCs (�), number of VIMs (T), number

of racks, servers, networks, and number of VNFs (�): �-�g = {X, T, �}

2) Constraints

TABLE V. VNF CONSTRAINTS

(27) Each ��	
 will have a set %�D�
 with VNFC belonging to it and a set %'

with Virtual Machines %'
 ⊆ %�D�
 ∈ ��	
 U��
.E, … , ��
.�, … , ��
.�V ⊆ U��	�
.E, … , ��	�
.�, … , ��	�
.�V ∈ ��	

(28) Each ��	
 has a set of %�D�. There is 1: � relationship between VNF and

its VNFCs. � is the number of VNFCs in the VNF. Each VNF can have a

different number of VNFCs. ∀ ��	
 ∈ %�D ∃ %�D�
 %�D�
 = U��	�
.E, … , ��	�
.�, … , ��	�
.�V � = |{��	�
.E, … , ��	�
.�}|.
(29) Each VNFC runs on a VM. The %�D�
 set has the same cardinality as the %'
 set. There is a bijection (i.e., 1:1 correspondence) from the %�D�
 to %'
 set. Each ��
.� of the %'
 set is paired with exactly one ��	�
.� from

the %�D�
 set. There are no unpaired VNFC and VM. %'
 = U��
.E, … , ��
.�, … , ��
.�V � = �{��	�
.E, … , ��	�
.�, … , ��	�
.�}� = |{��
.E, … , ��
.�, … , ��
.�}| ∀ ��	�
.� ∃ ��
.� | ��	�
.� ∈ %�D�
 ∧ ��
.� ∈ %'
.� ∧ 	: %�D�
 → %'

(30) %1&�[= {�=-�]E, … , �=-�]> , … , �=-�]"} ∈ ��	
 �=-�]> ⊆ U0��
.�, ��
.�5 � 0��
.�, ��
.�5 ∈ %'
} ∈ %1&�[

Virtual Link �=-�]> is an edge associated with two distinct VMs comprising ��	
; such that U0��
.�, ��
.�5�0��
.�, ��
.�5 ∈ %'

TABLE VI. NFVI CONSTRAINTS

(31) TOR connects servers in the rack and serves as access to the DC’s

aggregation network. There is a bijection (i.e., 1:1 correspondence) from the 2O/Y��.� to /Y��.�. Each 2O/Y��.� is paired with exactly one /Y��.� rack. There are

no unpaired TORs and Racks. ∀ /Y��.� ∃ 2O/Y��.� | 2O/Y��.� ∈ hi�Y�� ∧ /Y��.� ∈ �Z�[Y��
 (32) % = {�{&h�#`��� , �{&h�#��+||, hi�^, ���%���} �D%& = �%, �), � ∈ %��D%&) �HIG���) = {b ∈ %��D%&) | �, b ∈ ���D%&)} �|��� = ���) ∪ {�} = {b ∈ % | b, � ∈ �} ∪ {�} Next Hop Neighbor

(NHN) at the physical level, among servers, TORs, and switches. {b ∈ % | b, � ∈ �} all the neighbors {b ∈ %��D%&) | �, b ∈ ���D%&)} all vertices adjacent to � �|��� closed neighborhood of � or NHN, � – neighborhood

(33) The path is the total number of connected hops from one VM to another. We

will assign a different weight for the hops: T = 1 ∶ within the same server, T = 2 ∶ from server to server in the same rack via TOR, T = 4 ∶ from

server to server in different racks via respective rack’s TORs and first-level

Switch in the same datacenter, T = 6: from server to server in different

racks via respective rack’s TORs, first-level Switch and the 2nd

level/aggregation Switch in the same datacenter

(34) There is 1:1 mapping between a physical server and CHs ���()�.� ∃ {�()�.�
*�+, �()�.�

*�+, �()�.�
*�+} | ���.� ∈ �� �"�

= �����:.� ∃ {���:.� , ���:.� , ���:.� } | �ℎ$.� ∈ �#$

TABLE VII. DEPLOYMENT CONSTRAINTS

(35) This constraint defines that all VNFs with their corresponding VMs are

allocated to hosting devices. This constraint also ensures that VNFs cannot

be placed on hosting devices if their capacity exceeds ∑ ��	
 ∗ �34� ≤ ������.; , ∀ �ℎ". ∈ �#"34� ∈ GHI

(36) This constraint refers that the accumulated latency requirement is less than

the VNFs maximum capacity ∑ ��	
 ∗ 1�234� ≤ '�91�234� , ∀ ��	
 ∈ %�D���.; ∈ `��

(37) “M” is the total number of VMs and their respective VNFCs that are

connected as part of the VNF ∑ ∑ = '���.; ∈ `����.� ∃ 34��.� ∈ 34�

(38) This constraint ensures that all the VNFs are allocated to exactly one hosting

device, if possible. ∑ ��	
 ≤ 1, ∀ ��	
 ∈ %�D���.; ∈ `��

(39) This constraint ensures that the optimal {C, S, N} placement is within

VIM’s offered and available virtual {C, S, N} #-�2��.� ≤ ������.; , ∀ {���.�
ABC , ���.�

ABC , ���.�
ABC } ∈ {����.; , ����.; , ����.; }

3) Objective Function

TABLE VIII. OBJECTIVE FUNCTION

(40) Minimize the latency between VMs that are part of the ��	
 '-�01�234�5 = '-� 7∑ ∑ 9��.����.; ∗ =�2>
3"?��.� ∃ 34��.� ∈ 34�>
3"? @

IV. OUR SOLUTION

IllumiCore achieves the desired objective function with the

extensive set of complex VNF, VIM and NFVI constraints. For

its constraint programming solution, the IllumiCore utilizes the

OR-Tools [21]. It is an open-source software suite originally

developed by Google for optimization, tuned for tackling the

world’s most challenging optimization problems in routing,

flows, integer, linear programming, and in our case, constraint

programming. IllumiCore achieves optimal solution feasibility

focusing on the virtual and physical constraints and variables.

“Algorithm 1” presents the pseudocode for IllumiCore

optimal VNF placement implementation solution. We first

declare the model and create all required variables. We then

define VNF, VIM and NFVI constraints and objective function.

The CpSolver provides the optimal and efficient {C, S, N} VIM

resources allocations for VNF deployment.

Algorithm 1: IllumiCore Algorithm and pseudocode

Import packages & Setup environment

 ORTools: Constraint Programming

Initialize global variables

 Total time for resource allocation ≤ 3 mins

Define data model

 VNF data model

 VIM data model

 NFVI layer data model

Input VNF deployment request & IM numerical data for VIM & NFVI

Define Constraint Programming Solver

 Define next-hop neighbor

 Add resources constraint

 Add affinity constraint

 Add deployment constraints

 Add VM max latency constraint

 Add VNF max latency constraint

Set Objective Function

 Minimize the latency between VMs that are part of the VNF

Output assignment status, statistics & results

 Result: VM to CHs and Servers’ assignment matrix

A. Implemented Architecture

A DC is a pool of {�, �, �} resources clustered together

using communication networks to host applications and store

data. The DC’s primary information and communication

technology components are servers and network infrastructure.

The DC network (DCN) is typically based on a three-tier

architecture. Three-tier DC architecture is a hierarchical tree-

based structure comprised of three layers of switching and

routing elements having enterprise-class high-end equipment in

higher layers of the hierarchy. An example of the three-tier

DCN architecture is shown in “Fig. 2” and implemented in our

IllumiCore solution.

Fig. 2. Implemented NFVI / Datacenters & VIM architecture

Two DCs {DC1, DC2} are in 2 different geographical

locations and connected over the network with three-tier

network architecture – “Fig. 2”. Each DC will have the

aggregation switches {aS1, aS2} in DC1 and {aS3, aS4} in

DC2 connected to the core switch - cS1 and TORs {T1, … T6}

inside the DC’s racks {R1, …, R6}. The internal rack network

communications among servers within the rack are going

through the TOR. The aggregation switches allow us to

communicate among the Racks. The core switch allows us the

connectivity between the datacenters. The VIM layer is

implemented with the OpenStack. VIM’s CHs {CH1, …,

CH18} are mapped 1:1 to the NFVI layer’s physical servers

{S1, …, S18} - “Fig. 2”.

Core Switch

Aggregation Switches

TORs

Physical Servers

VIM(s): Compute Hosts

cS1

{aS1, …, aS4}

{T1, …, T6}

{S1, …, S18}

CH1

CPU: 24GHz

Mem: 96GB

Net: 16GB

{CH1, …, CH18}

Fig. 3. Requested VNF placement example

The VMs {VM1, …, VMm} that are part of VNFs are placed

and deployed on VIM’s CHs. According to ETSI standards,

VNFs consist of VNFCs with 1:m mapping between VNF and

VNFC. Each VNFC will have its VM with 1:1 mapping – “Fig.

3”.

We measure distances at the NFVI across VMs in terms of

hops. There is a direct correlation between the number of hops

and the communication latency. Hop count is the number of

routes through which a packet passes while traversing from the

source to the destination host. The hop count in the optimization

model is weighted (Table VI, 33). For example, a hop between

DCs has much more latency than a hop between servers that are

in a rack together. The critical, innovative approach proposed

in our IM [1] was to discover the virtual resources out of the

VIMs. Then map them into the related physical resources

identified from the NFVI and create one common catalog view.

This catalog will provide the mapping across virtual and

physical resources across compute, storage and network

dimensions and reflect the distances across these resources to

minimize the communications latencies across the VMs using

these resources. Hops’ distance impacts virtual deployments

even more than physical deployments as the VNFs are divided

into components and VMs. There are more chances for them to

be scattered across servers, racks, and data centers. We measure

distances across VMs in terms of hops from each other. There

is a direct correlation between the number of hops and the

communication latency [22]. Bandwidth on the hop can be

increased, but the latency has the speed of light [23].

For example, if the VMs are placed on the same server, the

compute distance is 0, as all compute communications are

across Intra-Server compute resources. Another example is that

if VMs are placed on two different servers in the same rack, all

compute communications will be across Inter-Server and Intra-

Rack through the TOR. The hop distance will be 2 (from

server1 to TOR and from TOR to server2). The distance

between 2 VMs in two different racks is 4 (from VM in server1

(rack 1) to TOR1, from TOR1 to agg_Switch1, from

agg_Switch1 to TOR2, and finally from TOR2 to VM in

server5 (rack 2)). Inter-Server and Intra-Rack distances and

hops are the same unless a stand-alone server is outside of the

rack. The same applies to Inter-Rack and Intra-DC distances

and hops. Our current research does not consider stand-alone

servers outside of the racks, as this is not a traditional DC

implementation.

In our research, we are considering only local storage for the

storage distance estimations.

B. Use Cases and Scenarios

We executed an extensive set of test cases to generate the

hint for the efficient and optimal placement for six different

VNFs – “Fig. 3”. We are considering three VNFs based on the

OpenStack default flavors (i.e., small, medium, and X-Large)

and three industry VNFs (i.e., Nokia HSS, Affirmed MCC and

Cisco VPC). All six VNFs are different in their virtual compute,

memory, and network requirements.

TABLE III. TYPES OF REQUESTED VNFS AND VIRTUAL MACHINES

TABLE IV. TYPES OF NFVI PHYSICAL MACHINES

“Table III” presents the VNFs used in our testing. The

numbers used in “Table III” present the number of VNFCs that

belong to a VNF. For example, a small VNF has 6 VNFC and

6 VMs. Each VM has virtual required vCPU, vMemory, and

vNetwork requirements. For example, small VNF’s VM1

requires 4GHz of vCPU, 1 GHz of vMemory, and 1GB of

vNetwork.

“Table IV” describes 18 physical servers {S1, …, S18} we are
using on our NFVI layer with their respective physical available
CPU, Memory and Networking resources availability. For
example, server 1 (i.e., S1) has 24Ghz physical and available
CPU, 96GB physical and available memory, and 16GB of
physical and available Network connectivity.

TABLE V. TYPES OF VIM COMPUTE HOSTS

“Table V” describes 18 CHs {CH1, …, CH18} in three different
VIMs with their corresponding virtual and available CPU,
memory, and network.

C. Results

IllumiCore provides (a) OPTIMAL, (b) FEASIBLE, and (c)
INFEASIBLE solutions. In the OPTIMAL solution, the
Objective Function score is based on the latency hops between
the VMs. Additionally, the OPTIMAL solution provides the
placement Hint with text – “Fig. 4” and graphical placement
examples – “Fig.5”.

Fig. 4. A snippet of IllumiCore placement hint in text form (Note: this is not a

full-text output result)

VNFs

VNF Components

Virtual Machines

{VNF1, …, VNF6}

{VNFC1, …, VNFCm}

{VM1, …, VMm}

The FEASIBLE solution provides the placement suggestion,
but not OPTIMAL, and exceeds the resource allocation time
window. IllumiCore will not provide the resource allocation and
VNF placement hint in the INFEASIBLE result based on the
input and CH virtual-and-available resources. For each VM ��
.� , IllumiCore will generate the Hint with optimal virtual {�, �, �} resources allocations: #-�2��.� ∃ {���.�

ABC , ���.�
ABC , ���.�

ABC }. The results also demonstrate

VIM’s current CHs virtual and available CPU, Memory, and
Network. Upon resource allocation for VNF placement, the
results demonstrate the hosts’ total occupied and total remaining
resource capacity.

IllumiCore utilizes Diagrams python module that allows
IllumiCore to express input and output results diagrams as Code
and graphical form. “Fig. 5” presents the output of IllumiCore
optimization placement results across all layers of NFV (VNF,
VIM, and NFVI). As a result, IllumiCore presents VNF’s VMs
mapped to their CHs for optimal placement. We also present
how the CHs are mapped to their respective physical services
and from where these physical services are deployed based on
our previously defined and discovered IM.

IllumiCore stores all the testing and optimization results in
text and graphical form. Text results are stored for all VNF
placements requests, and graphical results are stored only for
OPTIMAL and FEASIBLE results.

Fig. 5. Graphical hint representation for optimal and efficient VNF placement.

D. Comparisons

To evaluate our IllumiCore optimal VNF placement and
efficient resource allocation, we compare IllumiCore’s optimal
results output vs. the simulated VIM-only-based VNF
placement. “Fig. 6” presents an example output from IllumiCore
VNF optimization placement. We are comparing the results of
IllumiCore efficient VNF placement (i.e., Optimal Placement)
vs. VIM-only-based default placement (without NFVI
constraints and knowledge of physical substrate network). We
present 18 CHs {CH1, …, CH18} allocated across three
different VIMs {VIM1, VIM2, VIM3}. We overlay VIMs with
DC’s NFVI infrastructure. The CHs are mapped 1:1 to the
physical servers. Each server is in the racks {Rack1, …, Rack6}
and across two DCs {DC1, DC2}. IllumiCore optimally places
VNF1 and VNF2 on the CH3 (hop count = 0) vs. CH4 and CH10
with the hope count = 6 (due to physical resource fulfillment
from different servers, racks, and even DCs). Similarly,
IllumiCore places VNF3 & VNF6 on CH12 (hope count = 0) vs.

VIM-based placement on CH1 and CH3 with the hop count = 4.
Additionally, IllumiCore places VNF4 on CH1 vs. CH7,
allowing for VNF4 scaling within CH1 vs. allocating and
depleting all CH7 resources in the VIM-based mode.

Fig. 6. Testing results

In contrast, testing VNF placement without IllumiCore
placement and based on the default VIM-based placement
algorithms (Heat, Nova, and Ceilometer) provided VNF
placement on the distant hardware servers resulting in larger
inter-server, rack, and data centers communication latencies and
delays.

V. CONCLUSIONS AND FUTURE WORK

We presented a comprehensive approach for defining,
creating, and implementing the Optimization Model to minimize
the latency between VMs that are part of the VNF. We further
use the developed Optimization Model for efficient and optimal
VNF placement based on the compute, storage, and network
granularity while considering both virtual and physical layer
resources and constraints. IllumiCore reduces communication
latencies and delays by allocating resources at the physical layer
in close proximity (i.e., intra-server communications vs. inter-
server/intra-rack and vs. intra-DC) to improve overall VNF
performance.

While IllumiCore helps to allocate resources for VNF
placement efficiently, it could be further improved with
predictive Machine Learning (ML) implementation. In our
future work, we are planning to use ML to automatically learn
from real VNF, VIM, and NFVI data, deriving models that can
accurately predict optimal {C, S, N} resource requirements for
the efficient VNF Placement and further enhance the fidelity of
VNF latency modeling. ML for VNF dynamic resource
allocation can help reduce the VNF latency and significantly
improve the network service that the VNF is part of. We are
considering assembling a learning machine with this archived
data, which will allow us to find “similar” known VNFs. If there
is a close match, we will examine the placement scheme (based
on the compute, storage, and network virtual and physical
resources) and reuse it. Approximate Nearest Neighbor (ANN)
problem will help us identify these virtual and physical
resources for the VNF deployment. We plan to test and
investigate batch vs. sequential order of arrival for VNF
placement. While the ML for real-time resource allocation and
optimization for presently available resources is one approach,
we consider ML for predictive VNF placement. Placing and
assigning resources for efficient VNF placement ML will
predict what similar VNF can arrive for deployment and leave
out required resources for future VNF placement that could be

Core Switch

Aggregation Switches

TORs

Physical Servers

Compute Hosts

VM

VNFC

VNF

V
IM

N
F

V
I

V
N

F

part of the same Network Service. If the optimization process is
slow and takes more than the allocated time, we may opt out for
the default OpenStack Nova placement. Still, with the ML, we
can improve the optimization running time.

REFERENCES

[1] L. Popokh, P. Olive, I. Aldama, Y. Al-Doori and S. Nair, "Physical and
Virtual Resources Inventory Modeling for Efficient VNF
Placement," 2020 IEEE 10th International Conference on Consumer
Electronics (ICCE-Berlin), 2020, pp. 1-6, doi: 10.1109/ICCE-
Berlin50680.2020.9352159.

[2] C. Zhang, H. P. Joshi, G. F. Riley, and S. A. Wright, “Towards a virtual
network function research agenda: A systematic literature review of vnf
design considerations,” Journal of Network and Computer Applications,
p. 102417, 2019.

[3] J. Matias, J. Garay, N. Toledo, J. Unzilla, and E. Jacob, “Toward an sdn-
enabled nfv architecture,” IEEE Communications Magazine, vol. 53, no.
4, pp. 187–193, 2015.

[4] K. S. Ghaia, S. Choudhurya, and A. Yassineb, “A stable matching based
algorithm to minimize the end-to-end latency of edge nfv,” Procedia
Computer Science, vol. 151, pp. 377–384, 2019.

[5] ETSI White Paper No. #32. Network Transformation;. (Orchestration,
Network and. Service Management. Framework). 1st edition – October-
2019. ISBN No 979-10-92620-29-0. [Online]. Available:
https://www.etsi.org/images/files/ETSIWhitePapers/ETSI_White_Paper
_Network_Transformation_2019_N32.pdf

[6] J.G.Herreraand, J.F.Botero, “Resource allocation in nfv: A
comprehensive survey,” IEEE Transactions on Network and Service
Management, vol. 13, no. 3, pp. 518–532, 2016.

[7] Openstack. [Online]. Available: http://openstack.org

[8] “Network-aware scheduler in OpenStack,” [Online]. Available:
https://blueprints.launchpad.net/nova/+spec/network-aware-scheduler/

[9] F. Wuhib, R. Stadler, and H. Lindgren, “Dynamic resource allocation
with management objectives: Implementation for an openstack cloud,”
in Proceedings of the 8th International Conference on Network and
Service Management, ser. CNSM ’12. Laxenburg, Austria, Austria:
International Federation for Information Processing, 2019, pp. 309–315.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2499406.2499456

[10] M. Yoshida, W. Shen, T. Kawabata, K. Minato, and W. Imajuku,
“Morsa: A multi-objective resource scheduling algorithm for NFV
infrastructure,” in Network Operations and Management Symposium
(APNOMS), 2019 16th Asia-Pacific, Sept 2019, pp. 1–6.

[11] A. Baumgartner, V. S. Reddy, and T. Bauschert, “Combined virtual
mobile core network function placement and topology optimization with
latency bounds,” in Software Defined Networks (EWSDN), 2015 Fourth
European Workshop on, Sept 2015, pp. 97–102.

[12] M. F. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba, “On
orchestrating virtual network functions in NFV,” CoRR, vol.
abs/1503.06377, 2015. [Online]. Available:
http://arxiv.org/abs/1503.06377

[13] A. P. Bianzino, C. Chaudet, D. Rossi, J. L. Rougier, and S. Moretti,
“The green-game: Striking a balance between qos and energy saving,” in
Teletraffic Congress (ITC), 2011 23rd International, Sept 2011, pp. 262–
269.

[14] A. Basta, W. Kellerer, M. Hoffmann, H. J. Morper, and K. Hoffmann,
“Applying NFV and SDN to LTE Mobile Core Gateways, the Functions
Placement Problem,” in Proceedings of the 4th Workshop on All Things
Cellular: Operations, Applications, & Challenges, ser. AllThingsCellular
’14. New York, NY, USA: ACM, 2014, pp. 33-38. [Online]. Available:
http://doi.acm.org/10.1145/2627585.2627592

[15] F. Z. Yousaf, P. Loureiro, F. Zdarsky, T. Taleb, and M. Liebsch, “Cost
analysis of initial deployment strategies for virtualized mobile core
network functions,” IEEE Communications Magazine, vol. 53, no. 12,
pp. 60–66, Dec 2015.

[16] Sheoran, Amit & Sharma, Puneet & Fahmy, Sonia & Saxena, Vinay.
(2017). Contain-ed: An NFV Micro-Service System for Containing e2e
Latency. ACM GICCOMM Computer Communication Review. 47. 54-
60. 10.1145/3094405.3094408.

[17] Y. Zhang, N. Beheshti et al., “Steering: A software-defined networking
for inline service chaining,” in Network Protocols (ICNP), 2013 21st
IEEE International Conference on. IEEE, 2013, pp. 1–10.

[18] A. Mohammadkhan, S. Ghapani, G. Liu, W. Zhang, K. Ramakrishnan,
and T. Wood, “Virtual function placement and traffic steering in flexible
and dynamic software defined networks,” Mij, vol. 101, p. 1.

[19] L.-E. Liane, S. N. Joseph, C. Rami, and R. Danny, “Near optimal
placement of virtual network functions,” in Proc. IEEE INFOCOM,
2015.

[20] A. Gember et al., “Stratos: A network-aware orchestration layer for
virtual middleboxes in clouds,” arXiv preprint arXiv:1305.0209, 2013.

[21] Google Optimization Tools (a.k.a., OR-Tools) is an open-source, fast
and portable software suite for solving combinatorial optimization
problems. [Online]. Available: https://github.com/google/or-
tools#readme, https://developers.google.com/optimization

[22] Correlation between latency and hop count, Website, [Online],
Available:
https://www.researchgate.net/publication/267511260_CORRELATION
_BETWEEN_LATENCY_AND_HOP_COUNT

[23] Primer on the latency and bandwidth, Website, [Online], Available:
https://hpbn.co/primer-on-latency-and-bandwidth/

[24] OpenStack QoS, Website, [Online], Available:
https://docs.openstack.org/neutron/latest/admin/config-qos.html

		2021-10-08T12:30:57-0400
	Preflight Ticket Signature

