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Abstract—Network Function Virtualization (NFV) enables 

telecommunication operators to place and allocate resources 

dynamically to address the needs of Internet of Things (IoT), 

Intelligent Edge Computing (IEC) and emerging 5G services in a 

highly efficient manner. The efficient Virtual Network Function 

(VNF) placement and deployment largely depend on optimizing 

Virtual Machines (VM) compute, storage, and network resource 

allocation in the cloud-based platforms and their physical hosts. 

This research further extends our previously defined Information 

Model of mapped NFV Infrastructure (NFVI) and Virtualized 

Infrastructure Management (VIM) resources to derive VNF’s 

placement and optimal resource allocation. Our optimization 

solution IllumiCore derives the VNF’s optimal placement and 

minimizes the communication latency among VMs that are part of 

the VNF and entire communication network. The results 

demonstrate optimal and improved VNF placement and resource 

management. 

Keywords—NFV, VNF, VIM, NFVI, efficient VNF placement, 

resource allocation and management, communication latencies 

I. INTRODUCTION 

The conventional Data Centers (DCs) and communication 
network functions, such as routing, switching, firewall and load 
balancers are traditionally hardware-based and allocated for 
specific services. This reliance on hardware-based resources 
results in various deployment and maintenance challenges (i.e., 
slowing down the introduction of new and emerging services, 
increasing operating costs) [2]. The innovative methodologies 
called NFV, and Software-Defined Networking (SDN) were 
proposed by several world-leading telecommunication operators 
in 2012 [3], [4] to address these challenges. NFV [5] allows 
network operators to accelerate the deployment of new virtual 
devices, called VNFs, in a more dynamic and automated 
approach. VNFs play a vital role in today and future networks. 
They support a diverse set of functions ranging from Enterprise 
to Wireless networks. Optimizing the Compute, Storage, and 
Networking {�, �, �} resources allocation in a coordinated way 
between physical and virtual hosting devices for VNFs in an 
NFV-based network architecture remains an open challenge [6]. 
The “Previous Work” section summarizes these challenges and 
gaps. Our review recognizes that different schemes and 
algorithms did not consider some essential parameters, such as 
combining the {�, �, �} across physical and virtual platforms. 
Efficient VNF placement is particularly challenging, mainly for 
two reasons. First, depending on VNFs modeling, maturity, and 
standards compliance, end-to-end (E2E) latencies may become 
intolerable. Second, resource allocation is a cost and time-
effective task. {�, �, �} resources allocated to a VNF instance 

will impact the latency and performance of the VNF and 
corresponding Network Service (NS). Therefore, this paper 
formulates and implements the comprehensive Optimization 
Model and the Objective Function to minimize communication 
latency between VNF Components (VNFC) and their 
corresponding VMs based on the previously defined 
Information Model (IM) [1] of mapped physical and virtual 
resources to derive the hint for efficient VNF placement.  

The rest of the paper is organized as follows. In Section II, 

we give an overview of previous and related work. Section III 

presents the optimization model with constraints and the 

objective function, and Section IV describes the details of our 

optimization solution. We discuss the complexity of VNF, VIM, 

NFVI parameters and constraints and formulate the optimization 

function as a constraint programming solution. We present use 

cases and scenarios and the evaluation results of our solutions in 

Section IV before concluding the paper in Section V. 

II. PREVIOUS WORK 

 The VNFs deployment and VM placement is a well-studied 
and researched problem in the literature and industry due to its 
importance for the telecommunication operators. This section 
reviews the OpenStack approach for VM deployment, 
placement techniques, algorithms, and various resource 
allocation approaches introduced to realize it.  

A. OpenStack 

OpenStack [7], the popular open-source cloud operating 
system, is established to control and manage the converged (i.e., {�, �, �}  combined) resources. Even though OpenStack is a 
mature software platform, the developers still should overcome 
various challenges to orchestrate OpenStack resources and 
services. For example, when utilizing the Infrastructure as a 
Service (IaaS) resource provisioning, the developers need to 
figure out where and how they create VMs. In placing VMs, the 
default OpenStack resources schedulers (Nova, Heat, and 
Ceilometer) only consider computing loads and do not consider 
networking and storage conditions yet. The necessity of a 
network-aware scheduler has been discussed in the OpenStack 
community [8] and later in [24]. OpenStack Quality of Service 
(QoS) defines the ability to guarantee specific network 
requirements like bandwidth, latency, jitter, and reliability to 
satisfy a Service Level Agreement (SLA) between an 
application provider and end-users. Network devices such as 
switches and routers can mark traffic to handle a higher priority 
to fulfill the QoS conditions agreed under the SLA. In other 
cases, specific network traffic such as Voice over IP (VoIP) and 



video streaming must be transmitted with minimal bandwidth 
constraints. On a system without network QoS management, all 
traffic will be transmitted in a “best-effort” manner, making it 
impossible to guarantee service delivery to customers. The 
example of extended OpenStack architecture for a dynamic 
resource allocation can be found in [9], where the authors 
provide an extensible set of management objectives. The system 
can switch at runtime during the process of resource allocation 
for interactive and computationally intensive applications. 
However, they do not address VNF deployment. In [10], the 
authors propose modifications to OpenStack’s Nova scheduler 
to solve the NFVI resources’ joint optimization problem. They 
introduce constraints for the VNF deployment related to QoS, 
fault-tolerance, and network topology redundancy, but they do 
not discuss the interaction between OpenStack and the network 
controller. IllumiCore enhances the OpenStack QoS approach 
with optimal resource allocation based on the IM from VIM and 
NFVI substrate layers and networks. 

B. VNF Deployment 

In [11], the authors present an optimization model for VNFs 
deployment as part of Virtual Mobile Core Networks. They face 
the problem of resource allocation for a core network service 
chain as a combination of VNF. In this work, latency is a 
combination of processing, packet queuing and propagation 
delay. The first two variables depend on the traffic utilization of 
the node the VNF is placed on, while the last one is a function 
of the path length. The assumption is to know in advance the 
precise input parameters, such as processing, packet queuing 
and propagation delay, but it is not the case. Another paper, [12], 
presents an Integer Linear Programming (ILP) model for VNF 
orchestration. The model is solved to determine the optimal 
number of VNFs and place them at the optimal locations to 
optimize network operational cost and resource utilization. The 
ILP model-based solution is suitable for small networks; 
however, more extensive networks’ heuristics may not resemble 
large production networks. The work in [14] investigates the 
benefits of using two approaches: the NFV and SDN. The 
proposed VNF placement objective minimizes the total network 
load overhead by considering several parameters, such as the 
data plane delay and the SDN control overhead. In [15], the 
authors discuss applying constraint-based heuristics to deploy 
VNFs for Evolved Packet Core services (EPC). They show the 
results in terms of the average number of used CPU cores and 
aggregate throughput for placement strategies. In [16], the 
authors argue placing VNFs and learning algorithms for 
efficient replacement over time. We find this a very inefficient 
approach. It is challenging to reposition VNF after deployment 
into production.  

C. VM Placement Techniques 

Proper VM placement helps improving network resources 
efficiency, reduce communication delays and latency. Both [17] 
and [18] consider VNF placement and steer traffic through NS, 
while neither has the bandwidth and latency optimization. The 
work in [19] only focuses on initial placement by minimizing 
VM communication distance and setup cost, which ignores the 
VNF scaling problem. In [20], authors build a network-aware 
orchestration layer for virtual middleboxes. It considers a rack-
aware VM placement, while its elastic placement strategy brings 
a lot of migration overhead. Perfect knowledge for all the 

parameters is assumed in all those models and algorithms, and 
optimal values are computed based on such precise input 
assumptions. However, if input parameters later vary, the 
optimal solution previously found may be infeasible, making 
those approaches impractical.  

Our approach addresses VM deployment and placement 
techniques deficiencies. IllumiCore is modeling the {�, �, �} 
efficient resource allocation for VNFs placement while 
minimizing the communications latencies between VMs and 
satisfying ETSI VNF operations (i.e., deploy, un-deploy, scale, 
heal and operate). We consider physical and network topology 
in the model, along with the compute and storage. Our approach 
is, in comparison, a broader, optimal solution and offers efficient 
and optimal placement of multiple VNF instances on-demand 
and chain service functions. 

III. OPTIMIZATION MODEL 

IllumiCore’s mathematical optimization model attempts to 
minimize the latency between VMs that are part of the VNF 
without violating VNF, VIM and NFVI resource constraints. 
The proposed IllumiCore optimization model, objective 
function, algorithm, and resource allocation are proposed and 
implemented for VNFs and later for NS functional blocks.  

A. Optimization Model Definition 

In our approach, we based the optimization model for 
efficient VNF placement on the IM previously derived in [1]. 
“Fig. 1” describes the IM resources and substrate network 
(NFVI) topology discovery.  VNF ��	
 deployment request 
(step #1) triggers the IM update from VIM and NFVI layers. 
Requested VNF ��	
 will require certain number of virtual-and-
required resources: 

���.�  ∃ ����.�� , ���.�� , ���.�� � | ��
.�  ∈  ��	�
.�  ∈  ��	
  

 
Fig. 1. Information Model, resources and topology discovery 

We discover all virtual resources from the VIM (step #3) 
and define them as follows: ������.� ∃ {����.� , ����.� , ����.� } | �ℎ".� ∈  �#$. There exists 

Compute Host �ℎ".� with capacity  ������.� at each %&'" in 

terms of virtual-and-available Compute - ����.�  , Storage - ����.�  and Network - ����.�  , such that every Compute Host 

(CH) �ℎ".� belongs to the set of �#".  “TABLE II” (9, 10) 

We discover all physical resources from NFVI (step #2) 
and define them as follows: ���()�.�  ∃ {�()�.�

*�+, �()�.�
*�+, �()�.�

*�+} | ���.�  ∈  �� �"� . There exists 



Physical Server ���.�  with capacity ���()�.�  at each %&'$ in 

terms of Physical-and-Available Compute - �()�.�
*�+ , Storage - 

�()�.�
*�+ and Network - �()�.�

*�+ , such that every server ���.� belongs 

to the set of physical server in the rack - �� �"� .  “TABLE III” 

(23).  

We describe IllumiCore’s optimization model mathematical 
formulations with inputs (i.e., VNF deployment request: ���.�  ∃ ����.�� , ���.�� , ���.�� � | ��
.�  ∈  ��	�
.�  ∈  ��	
  for 

each virtual machine  ��
.�  requested to be deployed  ���.� , there exists a set of virtual & required compute : ���-..
�/

, 

storage: ���.��  and network : ���.�� , such that every virtual 

machine ��
.�  belongs to a VNFC ��	�
.�   and each VNFC 

belongs to a VNF - ��	
), constraints and objectives. IllumiCore 
utilizes a constraint programming solution (step #4) to find the 
optimal VNF placement and produce the hint to NFV 
Orchestrators for VNF efficient and optimal deployment (step 
#5). We analyze and relate physical and virtual information not 
only in terms of compute nodes (i.e., VM to PM mapping) but 
all the locations, distances, and network connectivity across both 
physical and virtual resources as VNF building blocks. 

Our objective function is to minimize the latency between 
VMs that are part of the VNF: 

'-�01�234�5 =
'-� 7∑  ∑ 9��.���:.;   ∗  =�2>
3"?��.� ∃ 34��.� ∈ 34�>
3"? @  

 

IllumiCore’s efficient placement algorithm generates the Hint 

with optimal virtual {�, �, �} resources allocations for VNF 

deployment - #-�2��.�  ∃ {���.�
ABC , ���.�

ABC , ���.�
ABC } for each ��
.�   

B. Optimization Model Formulations, Input, Constraints and 

Objective 

1) Optimization Model Input 

TABLE I.  VNF PARAMETERS 

(1) There are many VNFs in the telecommunications operators’ networks, both 

Enterprise and Wireless. Notation ��	
 represents the -C� VNF in set %�D %�D =  {��	E, ��	F, . . . , ��	
, . . . , ��	3}   

(2) There could be one or many (i.e., �) VNFs to be deployed at the same time. 

The number of VNFs to be deployed is � = |%�D| 
(3) Total resources required from the VIM for the � number of VNFs to be 

deployed. �GHI  =  ∑ �34� , | ��	
  ∈  %�D3
JE   

(4) �34� defines the total resources required for the single ��	
 deployment.  �34� =  ∑ �34��.�  =  ∑ ���.���JE��JE   

where � is the total number of VNFCs and VMs for VNF ��	
 
(5) For each ��
.�, there are virtual-required resources: ���.�� : compute, ���.�� : 

storage and ���.�� : Network 

���.�  ∃ ����.�� , ���.�� , ���.�� � | ��
.�  ∈  ��	�
.�  ∈  ��	
  ���.�  defines the total resources required for ��
.� deployment 

 (6) Placement Policy (Affinity / Anti-Affinity) for ��	
 deployment. K34�  ={1, 2, 0 }  ∈ �O=-�P  

�O=-�P =  Q1,          affinity2, anti-affinity0,    otherwise

  

(7) '�91�234�  defines the Maximum Latency each ��	
 can tolerate 

(8) '�91�2��.� defines the Maximum Latency each ��
.� can tolerate 

 

TABLE II.  VIM PARAMETERS 

(9) There could be one or many VIMs in {�-�E, … , �-�" , … , �-�S} in the %&' set implemented across one or many data centers (DC):  %&' = {�-�E, … , �-�", … , �-�S}.  

CHs are defined per each VIM (i.e., �-�"). �-�" ∈ %&' and T = |{%&'}| 
is the number of VIMs. CH is the abstract definition of a server in 

OpenStack. 

There is a set of �#" = U�ℎ".E, … , �ℎ".�, … , �ℎ".V as part of the �-�"  and ℎ = |�#$| is the total number of CHs per individual �-�" 

(10) CH �ℎ".� will have its capacity of virtual-available {C, S, N} resources 

available for VM hosting/instantiation: ������.� ∃ {����.� , ����.� , ����.� } | �ℎ".� ∈  �#"  

TABLE III.  NFVI PARAMETERS 

(11) Set of Datacenters: W� = {X�E, … , X�
, … , X�Y}  

(12) Physical rack in the X�
: �Z�[Y�� = {/Y��.\ , … , /Y��.� , … , /Y��.)}  

(13) Total number of racks across all DCs: /��]^CAC > =  ∑ |X�
||_`|
JE   

(14) Set of physical servers enclosed in the Rack with the single Top of the Rack 

(TOR). There could be one or many servers in the rack: �� �"� =
�^��.\ , … , ^��.� , … , ^��.a�, /��]
 is from �Z�[Y�� set 

(15) Number of servers per rack: �b�cd�)ef� = |�� �"�|  
(16) Total number of servers: ^g/�g/^CAC > =  �b�cd�)ef� ∗  /��]^CAC >  
(17) There is a set of TORs per X�
.�: hi�Y�� = {2O/Y��.\ , … , 2O/Y��.� , … , 2O/Y��.�}   

(19) Set of aggregation Switches per DC X�
.�:  
�{+||Y��.� = }^T ~~Y��.\ , … , ^T ~~Y��.� , … , ^T ~~Y��.��  

(20) Number of the sw_agg per DC X�
 : �b�cS_ ~~�f� = |�{_Z��Y��.�|   
(22) ^T�A�d = 1 Core Switch.  

There is one active Core Switch in the DC architecture. 

(23) Each DC’s X�
 physical Server will have its Physical-Available {C, S, N} 

resources: ���()�.�  ∃ {�()�.�
*�+, �()�.�

*�+, �()�.�
*�+} | ���.�  ∈  �� �"�   

TABLE IV.  OTHER VARIABLE & PARAMETERS 

(24) Binary decision variable denoting if VM ��
.� is deployed on the CH �ℎ$.� ∶
9��.���:.� =  }1, if ��
.� is allocated to �ℎ$.�   0, otherwise                                     

(25) Total time for ��	
 resource allocation: h�;���   

(26) Size of the problem: i.e., number of DCs (�), number of VIMs (T), number 

of racks, servers, networks, and number of VNFs (�): �-�g = {X, T, �}  

 
2) Constraints 

TABLE V.  VNF CONSTRAINTS 

(27) Each ��	
 will have a set %�D�
 with VNFC belonging to it and a set %'
 
with Virtual Machines %'
  ⊆  %�D�
  ∈ ��	
  U��
.E, … , ��
.�, … , ��
.�V  ⊆ U��	�
.E, … , ��	�
.�, … , ��	�
.�V ∈ ��	
  

(28) Each ��	
 has a set of %�D�. There is 1: � relationship between VNF and 

its VNFCs.  � is the number of VNFCs in the VNF. Each VNF can have a 

different number of VNFCs. ∀ ��	
 ∈ %�D ∃ %�D�
   %�D�
 = U��	�
.E, … , ��	�
.�, … , ��	�
.�V    � = |{��	�
.E, … , ��	�
.�}|. 
(29) Each VNFC runs on a VM. The %�D�
 set has the same cardinality as the %'
 set. There is a bijection (i.e., 1:1 correspondence) from the %�D�
 to %'
 set. Each ��
.� of the %'
 set is paired with exactly one ��	�
.� from 

the %�D�
 set. There are no unpaired VNFC and VM. %'
 = U��
.E, … , ��
.�, … , ��
.�V   � =  �{��	�
.E, … , ��	�
.�, … , ��	�
.�}� =  |{��
.E, … , ��
.�, … , ��
.�}|  ∀ ��	�
.� ∃ ��
.� | ��	�
.� ∈ %�D�
 ∧ ��
.� ∈ %'
.� ∧ 	: %�D�
  → %'
  
(30) %1&�[ = {�=-�]E, … , �=-�]> , … , �=-�]"}  ∈  ��	
  �=-�]> ⊆ U0��
.�, ��
.�5 � 0��
.�, ��
.�5  ∈ %'
}  ∈ %1&�[  

Virtual Link �=-�]> is an edge associated with two distinct VMs comprising ��	
; such that U0��
.�, ��
.�5�0��
.�, ��
.�5  ∈ %'
  



TABLE VI.  NFVI CONSTRAINTS  

(31) TOR connects servers in the rack and serves as access to the DC’s 

aggregation network. There is a bijection (i.e., 1:1 correspondence) from the 2O/Y��.� to /Y��.�. Each 2O/Y��.� is paired with exactly one /Y��.� rack. There are 

no unpaired TORs and Racks.  ∀ /Y��.�  ∃ 2O/Y��.�  | 2O/Y��.� ∈  hi�Y��  ∧ /Y��.� ∈  �Z�[Y��    
 (32) % = {�{&h�#`��� , �{&h�#��+||, hi�^, ���%���}  �D%& = �%, �), � ∈ %��D%&)  �HIG���) = {b ∈ %��D%&) | �, b ∈ ���D%&)}  �|��� = ���) ∪ {�} = {b ∈  % | b, � ∈ �}  ∪ {�}   Next Hop Neighbor 

(NHN) at the physical level, among servers, TORs, and switches. {b ∈  % | b, � ∈ �} all the neighbors {b ∈ %��D%&) | �, b ∈ ���D%&)} all vertices adjacent to � �|��� closed neighborhood of � or NHN, � – neighborhood 

(33) The path is the total number of connected hops from one VM to another. We 

will assign a different weight for the hops: T = 1 ∶ within the same server, T = 2 ∶ from server to server in the same rack via TOR, T = 4 ∶ from 

server to server in different racks via respective rack’s TORs and first-level 

Switch in the same datacenter, T = 6: from server to server in different 

racks via respective rack’s TORs, first-level Switch and the 2nd 

level/aggregation Switch in the same datacenter 

(34) There is 1:1 mapping between a physical server and CHs ���()�.�  ∃ {�()�.�
*�+, �()�.�

*�+, �()�.�
*�+} | ���.�  ∈  �� �"�     

= �����:.� ∃ {���:.� , ���:.� , ���:.� } | �ℎ$.� ∈  �#$  

TABLE VII.  DEPLOYMENT CONSTRAINTS  

(35) This constraint defines that all VNFs with their corresponding VMs are 

allocated to hosting devices. This constraint also ensures that VNFs cannot 

be placed on hosting devices if their capacity exceeds ∑ ��	
  ∗  �34�  ≤  ������.;  ,   ∀ �ℎ".  ∈  �#"34� ∈ GHI   

(36) This constraint refers that the accumulated latency requirement is less than 

the VNFs maximum capacity ∑ ��	
  ∗  1�234�  ≤  '�91�234� ,   ∀ ��	
  ∈  %�D���.; ∈ `��   

(37) “M” is the total number of VMs and their respective VNFCs that are 

connected as part of the VNF ∑  ∑ =  '���.; ∈ `����.� ∃ 34��.� ∈ 34�   

(38) This constraint ensures that all the VNFs are allocated to exactly one hosting 

device, if possible. ∑ ��	
  ≤  1,   ∀ ��	
  ∈  %�D���.; ∈ `��   

(39) This constraint ensures that the optimal {C, S, N} placement is within 

VIM’s offered and available virtual {C, S, N} #-�2��.� ≤  ������.; , ∀ {���.�
ABC , ���.�

ABC , ���.�
ABC }  ∈  {����.; , ����.; , ����.; }  

 
3) Objective Function 

TABLE VIII.  OBJECTIVE FUNCTION 

(40) Minimize the latency between VMs that are part of the ��	
 '-�01�234�5 = '-� 7∑  ∑ 9��.����.;   ∗ =�2>
3"?��.� ∃ 34��.� ∈ 34�>
3"? @   

IV. OUR SOLUTION 

IllumiCore achieves the desired objective function with the 

extensive set of complex VNF, VIM and NFVI constraints. For 

its constraint programming solution, the IllumiCore utilizes the 

OR-Tools [21]. It is an open-source software suite originally 

developed by Google for optimization, tuned for tackling the 

world’s most challenging optimization problems in routing, 

flows, integer, linear programming, and in our case, constraint 

programming. IllumiCore achieves optimal solution feasibility 

focusing on the virtual and physical constraints and variables.  

“Algorithm 1” presents the pseudocode for IllumiCore 

optimal VNF placement implementation solution. We first 

declare the model and create all required variables. We then 

define VNF, VIM and NFVI constraints and objective function. 

The CpSolver provides the optimal and efficient {C, S, N} VIM 

resources allocations for VNF deployment. 

 
Algorithm 1: IllumiCore Algorithm and pseudocode  

Import packages & Setup environment 

     ORTools: Constraint Programming  

Initialize global variables 

     Total time for resource allocation ≤ 3 mins 

Define data model 

     VNF data model 

     VIM data model 

     NFVI layer data model 

Input VNF deployment request & IM numerical data for VIM & NFVI 

Define Constraint Programming Solver 

     Define next-hop neighbor 

     Add resources constraint 

     Add affinity constraint 

     Add deployment constraints 

     Add VM max latency constraint 

     Add VNF max latency constraint 

Set Objective Function 

     Minimize the latency between VMs that are part of the VNF 

Output assignment status, statistics & results 

     Result: VM to CHs and Servers’ assignment matrix 

 

A. Implemented Architecture 

A DC is a pool of {�, �, �}  resources clustered together 

using communication networks to host applications and store 

data. The DC’s primary information and communication 

technology components are servers and network infrastructure. 

The DC network (DCN) is typically based on a three-tier 

architecture. Three-tier DC architecture is a hierarchical tree-

based structure comprised of three layers of switching and 

routing elements having enterprise-class high-end equipment in 

higher layers of the hierarchy. An example of the three-tier 

DCN architecture is shown in “Fig. 2” and implemented in our 

IllumiCore solution.  

 
Fig. 2. Implemented NFVI / Datacenters & VIM architecture 

Two DCs {DC1, DC2} are in 2 different geographical 

locations and connected over the network with three-tier 

network architecture – “Fig. 2”. Each DC will have the 

aggregation switches {aS1, aS2} in DC1 and {aS3, aS4} in 

DC2 connected to the core switch - cS1 and TORs {T1, … T6} 

inside the DC’s racks {R1, …, R6}. The internal rack network 

communications among servers within the rack are going 

through the TOR. The aggregation switches allow us to 

communicate among the Racks. The core switch allows us the 

connectivity between the datacenters. The VIM layer is 

implemented with the OpenStack. VIM’s CHs {CH1, …, 

CH18} are mapped 1:1 to the NFVI layer’s physical servers 

{S1, …, S18} - “Fig. 2”.  

Core Switch

Aggregation Switches

TORs

Physical Servers

VIM(s): Compute Hosts

cS1

{aS1, …, aS4}

{T1, …, T6}

{S1, …, S18}

CH1

CPU: 24GHz

Mem: 96GB

Net: 16GB

{CH1, …, CH18}



 

Fig. 3. Requested VNF placement example 

The VMs {VM1, …, VMm} that are part of VNFs are placed 

and deployed on VIM’s CHs. According to ETSI standards, 

VNFs consist of VNFCs with 1:m mapping between VNF and 

VNFC. Each VNFC will have its VM with 1:1 mapping – “Fig. 

3”.  

We measure distances at the NFVI across VMs in terms of 

hops. There is a direct correlation between the number of hops 

and the communication latency. Hop count is the number of 

routes through which a packet passes while traversing from the 

source to the destination host. The hop count in the optimization 

model is weighted (Table VI, 33). For example, a hop between 

DCs has much more latency than a hop between servers that are 

in a rack together. The critical, innovative approach proposed 

in our IM [1] was to discover the virtual resources out of the 

VIMs. Then map them into the related physical resources 

identified from the NFVI and create one common catalog view. 

This catalog will provide the mapping across virtual and 

physical resources across compute, storage and network 

dimensions and reflect the distances across these resources to 

minimize the communications latencies across the VMs using 

these resources. Hops’ distance impacts virtual deployments 

even more than physical deployments as the VNFs are divided 

into components and VMs. There are more chances for them to 

be scattered across servers, racks, and data centers. We measure 

distances across VMs in terms of hops from each other. There 

is a direct correlation between the number of hops and the 

communication latency [22]. Bandwidth on the hop can be 

increased, but the latency has the speed of light [23]. 

For example, if the VMs are placed on the same server, the 

compute distance is 0, as all compute communications are 

across Intra-Server compute resources. Another example is that 

if VMs are placed on two different servers in the same rack, all 

compute communications will be across Inter-Server and Intra-

Rack through the TOR. The hop distance will be 2 (from 

server1 to TOR and from TOR to server2). The distance 

between 2 VMs in two different racks is 4 (from VM in server1 

(rack 1) to TOR1, from TOR1 to agg_Switch1, from 

agg_Switch1 to TOR2, and finally from TOR2 to VM in 

server5 (rack 2)). Inter-Server and Intra-Rack distances and 

hops are the same unless a stand-alone server is outside of the 

rack. The same applies to Inter-Rack and Intra-DC distances 

and hops. Our current research does not consider stand-alone 

servers outside of the racks, as this is not a traditional DC 

implementation.  

In our research, we are considering only local storage for the 

storage distance estimations.  

B. Use Cases and Scenarios  

We executed an extensive set of test cases to generate the 

hint for the efficient and optimal placement for six different 

VNFs – “Fig. 3”. We are considering three VNFs based on the 

OpenStack default flavors (i.e., small, medium, and X-Large) 

and three industry VNFs (i.e., Nokia HSS, Affirmed MCC and 

Cisco VPC). All six VNFs are different in their virtual compute, 

memory, and network requirements.  

TABLE III. TYPES OF REQUESTED VNFS AND VIRTUAL MACHINES 

 

TABLE IV. TYPES OF NFVI PHYSICAL MACHINES 

“Table III” presents the VNFs used in our testing. The 

numbers used in “Table III” present the number of VNFCs that 

belong to a VNF. For example, a small VNF has 6 VNFC and 

6 VMs. Each VM has virtual required vCPU, vMemory, and 

vNetwork requirements. For example, small VNF’s VM1 

requires 4GHz of vCPU, 1 GHz of vMemory, and 1GB of 

vNetwork. 

 

“Table IV” describes 18 physical servers {S1, …, S18} we are 
using on our NFVI layer with their respective physical available 
CPU, Memory and Networking resources availability. For 
example, server 1 (i.e., S1) has 24Ghz physical and available 
CPU, 96GB physical and available memory, and 16GB of 
physical and available Network connectivity.  

TABLE V. TYPES OF VIM COMPUTE HOSTS 

 

“Table V” describes 18 CHs {CH1, …, CH18} in three different 
VIMs with their corresponding virtual and available CPU, 
memory, and network. 

C. Results 

IllumiCore provides (a) OPTIMAL, (b) FEASIBLE, and (c) 
INFEASIBLE solutions. In the OPTIMAL solution, the 
Objective Function score is based on the latency hops between 
the VMs. Additionally, the OPTIMAL solution provides the 
placement Hint with text – “Fig. 4” and graphical placement 
examples – “Fig.5”.  

 
Fig. 4. A snippet of IllumiCore placement hint in text form (Note: this is not a 

full-text output result) 
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The FEASIBLE solution provides the placement suggestion, 
but not OPTIMAL, and exceeds the resource allocation time 
window. IllumiCore will not provide the resource allocation and 
VNF placement hint in the INFEASIBLE result based on the 
input and CH virtual-and-available resources. For each VM ��
.� , IllumiCore will generate the Hint with optimal virtual {�, �, �}  resources allocations: #-�2��.�  ∃ {���.�

ABC , ���.�
ABC , ���.�

ABC }. The results also demonstrate 

VIM’s current CHs virtual and available CPU, Memory, and 
Network. Upon resource allocation for VNF placement, the 
results demonstrate the hosts’ total occupied and total remaining 
resource capacity. 

IllumiCore utilizes Diagrams python module that allows 
IllumiCore to express input and output results diagrams as Code 
and graphical form. “Fig. 5” presents the output of IllumiCore 
optimization placement results across all layers of NFV (VNF, 
VIM, and NFVI). As a result, IllumiCore presents VNF’s VMs 
mapped to their CHs for optimal placement. We also present 
how the CHs are mapped to their respective physical services 
and from where these physical services are deployed based on 
our previously defined and discovered IM. 

IllumiCore stores all the testing and optimization results in 
text and graphical form. Text results are stored for all VNF 
placements requests, and graphical results are stored only for 
OPTIMAL and FEASIBLE results.  

 
Fig. 5. Graphical hint representation for optimal and efficient VNF placement. 

D. Comparisons 

To evaluate our IllumiCore optimal VNF placement and 
efficient resource allocation, we compare IllumiCore’s optimal 
results output vs. the simulated VIM-only-based VNF 
placement. “Fig. 6” presents an example output from IllumiCore 
VNF optimization placement. We are comparing the results of 
IllumiCore efficient VNF placement (i.e., Optimal Placement) 
vs. VIM-only-based default placement (without NFVI 
constraints and knowledge of physical substrate network). We 
present 18 CHs {CH1, …, CH18} allocated across three 
different VIMs {VIM1, VIM2, VIM3}. We overlay VIMs with 
DC’s NFVI infrastructure. The CHs are mapped 1:1 to the 
physical servers. Each server is in the racks {Rack1, …, Rack6} 
and across two DCs {DC1, DC2}. IllumiCore optimally places 
VNF1 and VNF2 on the CH3 (hop count = 0) vs. CH4 and CH10 
with the hope count = 6 (due to physical resource fulfillment 
from different servers, racks, and even DCs). Similarly, 
IllumiCore places VNF3 & VNF6 on CH12 (hope count = 0) vs. 

VIM-based placement on CH1 and CH3 with the hop count = 4. 
Additionally, IllumiCore places VNF4 on CH1 vs. CH7, 
allowing for VNF4 scaling within CH1 vs. allocating and 
depleting all CH7 resources in the VIM-based mode.  

 
Fig. 6. Testing results 

In contrast, testing VNF placement without IllumiCore 
placement and based on the default VIM-based placement 
algorithms (Heat, Nova, and Ceilometer) provided VNF 
placement on the distant hardware servers resulting in larger 
inter-server, rack, and data centers communication latencies and 
delays.  

V. CONCLUSIONS AND FUTURE WORK 

We presented a comprehensive approach for defining, 
creating, and implementing the Optimization Model to minimize 
the latency between VMs that are part of the VNF. We further 
use the developed Optimization Model for efficient and optimal 
VNF placement based on the compute, storage, and network 
granularity while considering both virtual and physical layer 
resources and constraints. IllumiCore reduces communication 
latencies and delays by allocating resources at the physical layer 
in close proximity (i.e., intra-server communications vs. inter-
server/intra-rack and vs. intra-DC) to improve overall VNF 
performance. 

While IllumiCore helps to allocate resources for VNF 
placement efficiently, it could be further improved with 
predictive Machine Learning (ML) implementation. In our 
future work, we are planning to use ML to automatically learn 
from real VNF, VIM, and NFVI data, deriving models that can 
accurately predict optimal {C, S, N} resource requirements for 
the efficient VNF Placement and further enhance the fidelity of 
VNF latency modeling. ML for VNF dynamic resource 
allocation can help reduce the VNF latency and significantly 
improve the network service that the VNF is part of. We are 
considering assembling a learning machine with this archived 
data, which will allow us to find “similar” known VNFs. If there 
is a close match, we will examine the placement scheme (based 
on the compute, storage, and network virtual and physical 
resources) and reuse it. Approximate Nearest Neighbor (ANN) 
problem will help us identify these virtual and physical 
resources for the VNF deployment. We plan to test and 
investigate batch vs. sequential order of arrival for VNF 
placement. While the ML for real-time resource allocation and 
optimization for presently available resources is one approach, 
we consider ML for predictive VNF placement. Placing and 
assigning resources for efficient VNF placement ML will 
predict what similar VNF can arrive for deployment and leave 
out required resources for future VNF placement that could be 
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part of the same Network Service. If the optimization process is 
slow and takes more than the allocated time, we may opt out for 
the default OpenStack Nova placement. Still, with the ML, we 
can improve the optimization running time. 
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