
Optimal Resource Allocation in SDN/NFV-Enabled
Networks via Deep Reinforcement Learning

Jing Su, Suku Nair
AT&T Center for Virtualization
Southern Methodist University

Dallas, USA
{suj, nair}@smu.edu

Leo Popokh
CMS

Hewlett Packard Enterprise
Dallas, USA

leonid.i.popokh@hpe.com

Abstract—Software-Defined Networking (SDN) and Network
Functions Virtualization (NFV) are two emerging paradigms that
enable the feasible and scalable deployment of Virtual Network
Functions (VNFs) in commercial-off-the-shelf (COTS) devices,
which deliver a range of network services with reduced cost. The
deployment of these services requires efficient resource allocation
that fulfills the requirements in terms of Quality of Service
(QoS) and Service-Level Agreement (SLA) while considering the
constraints of the underlying infrastructure, such as maximum
latency tolerance and affinity policies. To address this issue,
we study the resource allocation problem in SDN/NFV-enabled
networks, which involves numerous optimization variables re-
sulting from the multidimensional space of system component
parameters and states. Using deep reinforcement learning, we
propose a policy gradient-based algorithm with an invalid action
masking approach to efficiently tackle the resources allocation
problem while handling system constraints in industrial settings.
The simulation results unequivocally show the effectiveness and
performance of the proposed learning approach for this category
of problems.

Index Terms—Resource Allocation, NFV, VNF Placement,
Deep Reinforcement Learning

I. INTRODUCTION

With the introduction of mobile edge computing (MEC),
the core components of cloud has been moved to the mobile
edge network in order to reduce resource demands and user
experience delays. In the edge network that virtualizes a cloud-
like environment with computing, storage, and networking
resources, the users can distribute requested content or virtual
network functions (VNFs) across adjacent clouds. This method
mitigates the deployment and maintenance challenges for con-
ventional data centers, enables fast service introduction, and
decreases operating costs. Network Function Virtualization
(NFV) and Software-Defined Networking (SDN) proposed by
several leading industrial telecommunication operators in 2012
[1] enable the feasible and scalable deployment of VNFs in
commercial-off-the-shelf (COTS) devices. NFV allows net-
work operators to accelerate the deployment of new virtual
devices in a more dynamic and automated approach that
has the potential to lead to reductions in operating expenses
and capital expenses [2]. It enables virtualization of network
functions that can be deployed as virtual machines on general
purpose server hardware in cloud environments, which effec-
tively reduces costs in deployment and operational aspects [3].

NFV focuses on using COTS hardware, i.e., general-purpose
servers, for the substrate NFVI network to dynamically deploy
VNFs on-demand on the Virtualized Infrastructure Manage-
ment (VIM) layer and facilitate the migration of important in-
frastructure services, such as the Evolved Packet Core (EPC),
to NFV Infrastructure (NFVI).

The combination of SDN, NFV and MEC technologies are
widely considered to be essential in the development of 5G
[4]. To reap the benefits of SDN, NFV, and MEC, VNFs
must be provisioned with sufficient resources on edge servers
without compromising network quality of service (QoS) and
Service-Level Agreement (SLA). An optimized resource allo-
cation result can benefit the network in various aspects, such
as energy-saving, performance boost, and latency reduction.
Resource allocation optimization is widely recognized as an
NP-hard problem [5]–[7] in the telecommunication operation
and maintenance area, which is nontrivial to address in a
complex network as it involves a vast number of optimization
variables resulting from the multidimensional space of network
component parameters and states. Accordingly, determining
the optimal resource allocation is an important and challenging
problem to examine in SDN/NFV-enabled networks.

Machine learning (ML) has attracted considerable attention
from researchers in recent years due to its capacity for
large-scale data processing and intelligent decision-making.
Reinforcement Learning (RL) is a machine learning technique
for the process of making informed decisions by learning from
experience. However, in the traditional tabular-based RL algo-
rithms, the maintenance overhead of discrete (state, action)
to reward information Q table limited the dimensionality of
the target problem. The introduction of deep neural networks
made deep reinforcement learning (DRL) possible to process
high-dimensional inputs without the need for hand-crafted
feature representations. Deep reinforcement learning has ap-
parent advantages in resource allocation, which can realize
a speedy execution time than search-based approaches and
thoroughly learn the problem structure while expanding the
learning capacity. The trained models are effortless to use and
deploy in a distributed manner, and the inference process can
be accelerated by existing hardware (i.e., graphics card).

In this context, this paper presents a novel approach for
efficient resource allocation optimization utilizing a policy



gradient-based DRL agent and NFVI simulation DRL envi-
ronment. The paper thus aims to contribute to a general and
practice-oriented scheme for resource allocation in SDN/NFV-
enabled networks.

The contribution in this paper can be summarized as fol-
lows:

1) We model the resource allocation problem in SDN/NFV-
enabled networks as Markov decision process (MDP)
and utilize DRL to solve it.

2) We propose a novel approach for the DRL agent to cate-
gorize and handle the constraints that are predominantly
present in industrial settings.

3) We conduct a theoretical analysis of the agent algo-
rithm on the DRL environment and further construct a
PyTorch-based environment to evaluate its performance.
The simulation results demonstrate that our approach
outperforms the search-based constraint programming
method implemented on Google OR-Tools [8] in terms
of resource efficiency and processing time.

The remainder of this article is organized as follows. Section
II addresses the related work. In Section III and IV, the
proposed approach and the DRL implementation are described,
respectively. Section V presents simulation results and an-
alyzes the performance of the proposed approach. Finally,
Section VI concludes this article and discusses future research.

II. RELATED WORK

Resource allocation optimization has been extensively stud-
ied within the framework of SDN/NFV-enabled networks [9]–
[13]. Due to their importance for telecommunication opera-
tors, VM resource allocation and VNF deployment are well-
studied and researched problems in the literature and industry.
This section reviews three prevalent approaches to optimize
resource allocation and VNF deployments.

A. Search-based Approaches

Bari et al. (2015) [9] introduced an Integer Linear Program-
ming (ILP) model for VNF orchestration. The model is solved
to determine the optimal number of VNFs and place them at
the optimal locations to optimize network operational cost and
resource utilization. The ILP model-based solution is suitable
for small networks; however, more extensive networks’ heuris-
tics may not resemble large production networks.

Harutyunyan et al. (2019) [14] proposed ILP techniques to
formulate a joint Service Function Chain (SFC) placement,
user association, and resource allocation problem that took
end-to-end latency and data rate constraints into account. The
authors then developed a heuristic to overcome the scalability
issue of ILP-based solutions. Our work is flexible and scalable
to adapt to various situations that better meet the various chal-
lenges of cloud computing and fog computing environments.

B. Dynamic Programming

Ghribi et al. (2016) [10] utilized a dynamic programming-
based algorithm to solve the VNF placement problem. We find
it is hard to implement constraints and need many times of

backtracking for the optimal result and is therefore inefficient
in complex networks.

Forootani et al. (2021) [15] employed a stochastic dynamic
programming method to solve the resource allocation problem.
Nevertheless, only exact dynamic programming approaches
were applied and therefore were incapable of extending to
a general-purpose MDP framework.

C. End-to-end learning

Wang et al. (2018) [16] introduced a k-nearest neighbor
(k-NN) supervised learning classifier to solve the resource
allocation problem. It has no optimality guarantees and is
nontrivial to represent the problem itself.

Xiao et al. (2019) [11] presented a policy gradient based
adaptive DRL approach to acquire dynamic network state tran-
sitions and optimize the deployment of service function chains
(SFCs). The authors did not include handling constraints that
are broadly present in commercial circumstances. Pei et al.
(2020) [12] presented a Double Deep Q Network (DDQN)
based off-policy DRL algorithm to determine the optimal VNF
placement solution. It cannot be directly applied to large action
space since it relies on finding the action that maximizes the
action-value function, which needs an iterative optimization
process at each step in the continuous valued situation since
there are no trainable parameters in Q-learning that control
probabilities of action.

Sun et al. (2021) [17] proposed a data-driven method to
combine DRL and Graph Neural Networks (GNN) to solve
the VNF placement problem. The authors lack the inclusion
of processing delay between the DRL and GNN.

In contrast to the described approaches, our approach mod-
els the NFVI environment and virtual resources that satisfy
ETSI standards [18] and are capable of being extended to
general production environments. We used a Proximal Policy
Optimization (PPO) [19] based on-policy DRL algorithm for
the large and continuous action space settings. Constraints
are widely present in real scenarios and considered hard to
implement in end-to-end learning approaches [20]. We utilized
an invalid action masking mechanism to handle the hard
constraints and introduced a penalty factor to address the soft
constraints.

III. METHODOLOGY

The following section will discuss the methodology behind
our work, including modeling the problem and the proposed
solution to solve the VM batch arrival and compute host
overload problem.

A. Markov Decision Process

The Markov decision process (MDP) [21] formally de-
scribes an environment for reinforcement learning. We model
the resource allocation optimization problem in SDN/NFV-
enabled networks as an MDP tuple ⟨S,A,P,R, γ⟩ where:

• S: a finite set of NFVI states while the states include a
representation of available resources.



• A: a finite set of actions. An action is an allocation
decision or a placement act by the DRL agent, e.g.,
placing a virtual machine (VM) to a compute host (CH).

• P: a state transition probability matrix, the current state
depends only on its immediate previous state, Pa

ss′ =
P [St+1 = s′ | St = s,At = a].

• R is a reward function, Ra
s = E [Rt+1 | St = s,At = a].

• γ is a discount factor, γ ∈ [0, 1].

In the initial state, all of the remaining resources for the
current state of NFVI are available. The state transition matrix
P defines the transition probabilities from all states s to all
successor states s′. We reward the agent based on the impact of
placement actions on resource utilization, and the agent aims
to maximize cumulative rewards. The state reward Rs is the
expected reward over all the possible states in which one can
transition from state s. In these settings, uncertainty about the
future available resources states may not be fully represented.
Therefore the discount factor γ is introduced to present future
rewards. The return Gt defines the total discounted reward
from the time step t, and the final return reward will be
multiplied by the discount to avoid infinite returns in cyclic
Markov processes as:

Gt = Rt+1 + γRt+2 + . . . =

∞∑
k=0

γkRt+k+1 (1)

In general, we implement a decision maker, referred to as
an agent, interacts with the NFVI environment E by selecting
placement actions a in response to observations o of the
present state s. The set of all potential states (state space)
is denoted by S and can contain either a finite or an infinite
number of elements. Similarly, the set of possible placement
actions is denoted by A and is referred to as the action space.

B. Reinforcement Learning Environment

We utilize the OpenAI Gym [22] to construct the RL envi-
ronment. The NFVI environment can be considered to be not
constantly changing, since it is a virtual mapping of physical
hardware. Thus, the trained agent can be reused to predict
the optimal resource allocation and VM placement until a
modification to the hardware architecture. Agent training and
hardware upgrades can be performed simultaneously to avoid
additional service downtime and SLA degradation.

There will be one or several VMs arriving at the time step
t. Our approach maintains a VM arrival queue to implement
the QoS and SLA provision. Each VM will be assigned a
priority attribute to determine its position in the queue. The
priority value can be calculated on the basis of the QoS and
SLA requirements or the arrival sequence. Fig. 1 depicts the
reinforcement learning environment and agent observation.
The observation space is defined as a 2-dimensional discrete
tuple consisting of CH occupancy and resource availability
data, and the resource demand of VM that is at the top of the
current arrival queue.

Fig. 1. The RL environment consists of NFVI and VM arrival queue.

C. Action Space

An action is an allocation decision or placement act by the
agent, and thus the size of the action space depends on the
total number of compute hosts. In the NFVI environment, the
quantity of compute hosts is a countable integer. In industrial
settings, an NFVI often involves multiple data centers, and
each data center can have an arbitrary number of compute
hosts. Redundant compute hosts for load balance and fault-
tolerant purposes commit this number enormously in most
cases. In summary, the action space in this problem should
be considered large and discrete.

We expect the agent to choose the optimal action based
on its observations. Overloading the compute host results in
deterioration in application performance, resource shortages,
and a significant increase in power usage. To avoid placing a
VM to a CH incapable of fulfilling its resource requirement,
we use a predefined overload penalty hyperparameter to feed-
back a considerable negative reward. The agent will learn to
avoid overloading the compute host to obtain reward reduction
through the training process.

IV. DRL AGENT

This section gives an overview of our DRL agent, then
discusses the proposed solution to overcome the issues that
arise in the resource allocation optimization problem.

A. Overview

Existing studies that apply DRL to resource allocation adopt
mainly value-based agent algorithms such as Deep Q-Network
(DQN) [12], [23], [24]. However, it is likely intractable to
successfully train DQN-like networks in this context since
DQN relies on finding the action that maximizes the action-
value function, and it is challenging to explore large action



spaces efficiently. In addition, naive discretization of action
spaces needlessly throws away information about the structure
of the action domain, which is essential to solve the allocation
problem [25]. In contrast, policy-based approaches have the
advantages of unbiasedness and stability since they directly
optimize the quantity of interest while remaining stable under
the function approximation. Their biggest drawback is sample
inefficiency, since policy gradients are estimated from rollouts
and the variance is often extreme [26]. We adopt a policy-
based algorithm PPO to train the agent in our approach and
integrate randomizers to mitigate the sample inefficiency prob-
lem. PPO is one of the state-of-the-art reinforcement learning
approaches and has been widely applied to control tasks [27]–
[29]. Fig. 2 demonstrates an overview of the DRL framework
and the agent learning procedure. The agent observes the
state of the environment and uses Multi-Layer Perceptron
(MLP) to parameterize the distribution of decision policies.
Invalid actions determined by the environment are masked out
from the resulting action value provided by the agent. In this
context, invalid action masking helps increase the efficiency
of the learning process and enforce hard constraints. The
feedback reward from the environment will then deduct the
penalty factor based on the impact of the action. This adjusted
reward is the ultimate objective that the agent learns while
interacting with the environment through multiple trials and
errors.

Fig. 2. The DRL framework and agent learning procedure.

B. Invalid Action Masking

To avoid the agent overloading the compute host, we can
impose a large negative number as a reward for feedback.
However, this method is inefficient in the learning process
since the agent needs to learn this hard constraint thoroughly
by numerous epochs. Invalid action masking is a common
technique implemented to avoid repeatedly generating invalid
actions in large discrete action spaces [30]. It is typically per-
formed by substituting a large negative number near −∞ for
the actions to be masked. In policy gradient algorithms, actions
are sampled based on the probability distribution a ∼ πθ(· | s)
for policy πθ at state s while πθ = (· | s) = softmax(l(s)).
When we apply the mask, the logits l(s) outputted by policy
πθ given state s associated with the impossible action are at

−∞. Let invs denote the invalid action masking function given
state s, then we have the updated policy gradient for π′

θ:

π′
θ (· | st) = softmax (invs(l(s))) (2)

invs(l(s))i =

{
li if ai is valid in s

−∞ otherwise
(3)

The logits of the impossible action are replaced with −∞
when the mask is applied. In the implementation, we use
the smallest representable number in the data type used. For
example, the minimum value for the float32 data type in
PyTorch [31] is −3.4028e+ 38.

C. Action Selection

Exploration and exploitation are two action selection strate-
gies [32]. Exploration finds more information about the en-
vironment and selects an action randomly, while exploitation
exploits known information to maximize reward and applies a
greedy policy towards an optimal selection. When optimizing
resource allocation, we value the long-term weight of a state
more than the value of an action. i.e., for an incoming entity, it
may have many placement probabilities. The action of placing
it is less important than the impact of the placement on the
available resources that affect the forthcoming entities. To
balance the proportions of exploration and exploitation, we
implement an ϵ-greedy policy based on equation (4). This
policy generates a random number from the range (0, 1) for
comparison with the ϵ-greedy value. With a small probability
of ϵ, the agent tends to explore and not exploit what it has
learned so far.

at =

{
randA(s), if rand(0, 1) < ϵ

argmaxa Q (st, a) , otherwise.
(4)

D. Soft and Hard Constraints

One challenge in adopting RL for the optimization problem
is the difficulty in handling constraints that are vastly present
in production environments [20]. In the context of SDN/NFV-
enabled networks, we categorize constraints into two different
types: soft and hard constraints:

Soft constraints: are defined as a less forcing nature of the
system, such as placing VMs under the same network service
or VNF as close as possible, e.g., in the same data center
or even in the same rack. In this case, local optimality is
maximized while global optimality is achieved. We introduce
a penalty factor to handle soft constraints. We define a set
of fine-grained penalty functions p(Ci) for each constraint
Ci that in the definition of soft constraints Cs. This function
assigns a penalty value based on the satisfaction of the action
to the corresponding soft constraint. The penalty factor will be
the sum of all penalty function results. As shown in equation
(5), the final reward value R′

a for action a is obtained by
subtracting the penalty factor from the original reward value
Ra.



R′
a = Ra −

∑
i∈Cs

p(Ci) (5)

Hard constraints: are defined as a hard limitation that
cannot be broken, such as the maximum latency tolerance of
a VNF, and affinity policies. For comparison, hard constraints
must hold while soft constraints may be violated but as many
as possible should be satisfied [33]. Hard constraints are
addressed by invalid action masking in our approach. The DRL
environment collected all hard constraints and generated the
action mask vector for state st based on observation Ot at
time step t. The action mask vector is a list of binary values
that represent the validity of the action ai in state s and will
be accessed in the invalid action masking function invs. We
can make specific allocation actions impossible to select to
achieve hard constraints by manipulating the generation of
action masks vector.

E. Agent Training
The PPO-based training procedure is listed in Algorithm 1.

The procedure starts by building the environment based on the
NFVI configuration and initializing the observation and action
space. The hyperparameter N pre-defined the total episodes
for training. For each episode, the randomizer will generate
resource demand from pre-defined ranges. The environment
will collect hard constraints and mask invalid actions for the
current state. The agent performs action predictions based on
the ϵ-greedy policy.

Algorithm 1: PPO-based Training Procedure
Initialization :

Build environment based on NFVI configuration;
Initialize observation and action space;

for episode← 1, N do
t← 0;
Initialize state st;
Generate resources demand queue randomly;
repeat

Mask invalid actions
π′
θ (· | st) = softmax (invs(l(s)));

if rand(0, 1) < ϵ then
at = rand(A(s));

else
at = argmaxa Q(st, a);

end
Take action at according to policy π′(at|st; θ);
Compute reward Rt;
Compute penalty factor Pat for action at;
Rt ← Rt − Pat

;
Observe new state st+1;
t← t+ 1;

until st is terminal;
end

After an action is received, the environment will calculate
the reward and penalty factor based on soft constraints for

the predicted allocation action. The agent will learn from the
penalty-adjusted reward.

V. SIMULATION RESULTS

This section demonstrates the performance evaluation of
our approach in terms of training efficiency, time overhead,
and resource efficiency. We used Google Colab to conduct
the simulations. Google Colaboratory (also known as Colab)
is a research project for prototyping machine learning mod-
els and provides a serverless Jupyter notebook environment
for interactive development [34]. We constructed a PyTorch-
based environment for evaluation using the PyTorch 1.11.0
version [31]. OpenAI Gym [22] is used to construct the
RL environment, while Stable-Baselines3 [35] is utlized for
agent training. All the simulations are conducted on a Colab
notebook with an NVIDIA Tesla V100 GPU.

A. Experimental Setup
1) Agent Training Efficiency: To better illustrate the train-

ing efficiency of the proposed approach with invalid action
masking (InvPPO), we compare it against the original PPO
agent in the same environment and hyperparameters. We
conducted 10 separate experiments in different NFVI envi-
ronments to collect unbiased results.

2) Resource Efficiency and Processing Time: OpenStack
[36] is widely regarded as the de-facto open-source cloud
management system at the infrastructure as a service (IaaS)
layer in the industry [37]. Default scheduler in OpenStack
uses a worst-fit algorithm for VM allocation which leaves
large fragments of memory in compute nodes [38]. The worst-
fit assigns a VM to the lowest partially filled compute host
that fits it; otherwise, a new compute host is created [39].
In the older OpenStack versions, VMs are distributed evenly
across compute nodes which is the default OpenStack behavior
when creating VMs of the same flavor [40]. We call these two
strategies worst-fit and evenly and use them as baselines to
evaluate our approach.

In the simulation, we implemented the worst-fit and evenly
algorithms with Google OR-Tools [8] for efficient implemen-
tation. The number of search workers for constraints program-
ming (CP) solver is set to 1, and the device for the PyTorch
inference is set to cpu to prevent multithreading and hardware
acceleration advantages. In order to reduce the bias and jitter
of the experiment, we set up a fixed NFVI layer and randomly
generated VM arrival queue as the experimental environment
since NFVI as an infrastructure layer does not usually change
during operation. We include 10 compute hosts in the NFVI
layer settings and randomly generate their available resources.
The maximum capacity of the VM arrival queue is set to 16.
For experimental uniformity, we step the CP solver and DRL
agent per VM arrival. In this way, the CP solver tackles a
sequential arrival allocation problem that fits our approach.

B. Results and Analysis
PPO is a policy gradient algorithm that optimizes policy

(process for deciding actions) performance. The policy gradi-
ent loss is the mean magnitude of the policy loss function



that correlates with the degree to which the policy varies.
Fig. 3 displays the aggregated policy gradient loss of the 10
experiments to show the mean and 95% confidence interval
over 500, 000 timesteps. It turns out that our approach using
invalid action masking (InvPPO) demonstrates low variance
and stable convergence compared to the agent using the
original PPO algorithm and proven training efficiency.

Fig. 3. Policy gradient loss vs. timestep.

We performed the experiment on 1,000 randomly generated
VM arrival queues with a random number of VMs. In Fig. 4,
we evaluate the resource occupancy in terms of occupied CH
and processing time in milliseconds. For the same number of
VMs prerequisites, the lower occupied CH number and wall
time cost are better. When dealing with fewer VMs, worst-
fit has a slight advantage because it assigns a VM to the
lowest partially filled compute host that fits it. In this case,
no new CH allocation is involved, resulting in lower occupied
CH. Other than that, our approach (InvPPO) exhibits a lower
average resource occupancy than worst-fit and evenly while
delivering an overwhelming fast processing time.

Fig. 4. The resource occupancy and processing time regression model for
1000 executions.

VI. CONCLUSIONS AND FUTURE WORK

In this article, we studied the resource allocation problem
in SDN/NFV-enabled networks. In order to solve the problem,

we first formulated it as an MDP model aiming to maximize
resource efficiency. Then we proposed a novel PPO-based
DRL approach to make optimal allocation decisions while
addressing the constraints. We have given a detailed analysis of
our DRL agent, then constructed a PyTorch-based environment
and conducted various simulations to evaluate its performance.
The evaluation results show that our approach demonstrates
high performance in terms of training efficiency, processing
time, and resource efficiency.

For future work, we plan to implement multi-dimensional
constraints, such as network topology and data center policy,
into our environment and conduct a comprehensive evaluation
of latency and power consumption aspects. We plan to study
and integrate multiple levels of RL agents. We also plan to
combine reinforcement learning and constraints programming
for intricate constraints scenarios.

REFERENCES

[1] J. Matias, J. Garay, N. Toledo, J. Unzilla, and E. Jacob, “Toward
an SDN-enabled NFV architecture,” IEEE Communications Magazine,
vol. 53, no. 4, pp. 187–193, 2015. [Online]. Available: https:
//dx.doi.org/10.1109/mcom.2015.7081093

[2] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck,
and R. Boutaba, “Network Function Virtualization: State-of-the-
Art and Research Challenges,” IEEE Communications Surveys &
Tutorials, vol. 18, no. 1, pp. 236–262, 2016. [Online]. Available:
https://dx.doi.org/10.1109/comst.2015.2477041

[3] D. B. Oljira, K.-J. Grinnemo, J. Taheri, and A. Brunstrom, “A
model for QoS-aware VNF placement and provisioning,” in 2017
IEEE Conference on Network Function Virtualization and Software
Defined Networks (NFV-SDN). IEEE, 2017. [Online]. Available:
https://dx.doi.org/10.1109/nfv-sdn.2017.8169829

[4] N. Kiran, X. Liu, S. Wang, and C. Yin, “VNF Placement and
Resource Allocation in SDN/NFV-Enabled MEC Networks,” in
2020 IEEE Wireless Communications and Networking Conference
Workshops (WCNCW). IEEE, 2020. [Online]. Available: https:
//dx.doi.org/10.1109/wcncw48565.2020.9124910

[5] F. Bari, S. R. Chowdhury, R. Ahmed, R. Boutaba, and O. C. M. B.
Duarte, “Orchestrating Virtualized Network Functions,” IEEE Transac-
tions on Network and Service Management, vol. 13, no. 4, pp. 725–739,
Dec. 2016.

[6] T.-W. Kuo, B.-H. Liou, K. C.-J. Lin, and M.-J. Tsai, “Deploying chains
of virtual network functions: On the relation between link and server
usage,” in IEEE INFOCOM 2016 - The 35th Annual IEEE International
Conference on Computer Communications, Apr. 2016, pp. 1–9.

[7] J. Liu, Y. Li, Y. Zhang, L. Su, and D. Jin, “Improve Service Chaining
Performance with Optimized Middlebox Placement,” IEEE Transactions
on Services Computing, vol. 10, no. 4, pp. 560–573, Jul. 2017.

[8] L. Perron and V. Furnon, “OR-Tools,” Google, Apr. 2020. [Online].
Available: https://developers.google.com/optimization/

[9] M. F. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba, “On
orchestrating virtual network functions,” in 2015 11th International
Conference on Network and Service Management (CNSM). IEEE, 2015.
[Online]. Available: https://dx.doi.org/10.1109/cnsm.2015.7367338

[10] C. Ghribi, M. Mechtri, and D. Zeghlache, “A Dynamic Programming
Algorithm for Joint VNF Placement and Chaining,” in Proceedings
of the 2016 ACM Workshop on Cloud-Assisted Networking, ser.
CAN ’16. New York, NY, USA: Association for Computing
Machinery, Dec. 2016, pp. 19–24. [Online]. Available: https:
//doi.org/10.1145/3010079.3010083

[11] Y. Xiao, Q. Zhang, F. Liu, Jia Wang, J. Wang, Jia Wang, Miao
Zhao, M. Zhao, Z. Zhang, and J. Zhang, “NFVdeep: Adaptive online
service function chain deployment with deep reinforcement learning,”
Proceedings of the International Symposium on Quality of Service, pp.
1–10, Jun. 2019.



[12] J. Pei, P. Hong, M. Pan, J. Liu, and J. Zhou, “Optimal VNF
Placement via Deep Reinforcement Learning in SDN/NFV-Enabled
Networks,” IEEE Journal on Selected Areas in Communications,
vol. 38, no. 2, pp. 263–278, 2020. [Online]. Available: https:
//dx.doi.org/10.1109/jsac.2019.2959181

[13] L. Popokh, J. Su, S. Nair, and E. Olinick, “IllumiCore: Optimization
Modeling and Implementation for Efficient VNF Placement,” in 2021
International Conference on Software, Telecommunications and Com-
puter Networks (SoftCOM), Sep. 2021, pp. 1–7.

[14] D. Harutyunyan, N. Shahriar, R. Boutaba, and R. Riggio, “Latency-
Aware Service Function Chain Placement in 5G Mobile Networks,”
in 2019 IEEE Conference on Network Softwarization (NetSoft).
IEEE, 2019. [Online]. Available: https://dx.doi.org/10.1109/netsoft.
2019.8806646

[15] A. Forootani, M. Tipaldi, M. Ghaniee Zarch, D. Liuzza, and
L. Glielmo, “Modelling and solving resource allocation problems via
a dynamic programming approach,” International Journal of Control,
vol. 94, no. 6, pp. 1544–1555, Jun. 2021. [Online]. Available:
https://doi.org/10.1080/00207179.2019.1661521

[16] J.-B. Wang, J. Wang, Y. Wu, J.-Y. Wang, H. Zhu, M. Lin, M. Lin,
and J. Wang, “A Machine Learning Framework for Resource Allocation
Assisted by Cloud Computing,” IEEE Network, vol. 32, no. 2, pp. 144–
151, Apr. 2018.

[17] P. Sun, J. Lan, J. Li, Z. Guo, and Y. Hu, “Combining Deep
Reinforcement Learning With Graph Neural Networks for Optimal
VNF Placement,” IEEE Communications Letters, vol. 25, no. 1, pp.
176–180, 2021. [Online]. Available: https://dx.doi.org/10.1109/lcomm.
2020.3025298

[18] L. Popokh, P. Olive, I. Aldama, Y. Al-Doori, and S. Nair, “Physical and
Virtual Resources Inventory Modeling for Efficient VNF Placement,”
in 2020 IEEE 10th International Conference on Consumer Electronics
(ICCE-Berlin). Berlin, Germany: IEEE, Nov. 2020, pp. 1–6. [Online].
Available: https://ieeexplore.ieee.org/document/9352159/

[19] J. Schulman, Filip Wolski, F. Wolski, P. Dhariwal, A. Radford, and
O. Klimov, “Proximal Policy Optimization Algorithms,” arXiv: Learn-
ing, Jul. 2017.

[20] Y. Bengio, A. Lodi, and A. Prouvost, “Machine Learning for
Combinatorial Optimization: A Methodological Tour d’Horizon,”
arXiv:1811.06128 [cs, stat], Mar. 2020. [Online]. Available: http:
//arxiv.org/abs/1811.06128

[21] R. A. Howard, Dynamic Programming and Markov Processes., ser.
Dynamic Programming and Markov Processes. Oxford, England: John
Wiley, 1960.

[22] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “OpenAI Gym,” arXiv:1606.01540 [cs], Jun.
2016. [Online]. Available: http://arxiv.org/abs/1606.01540

[23] M. Bunyakitanon, X. Vasilakos, R. Nejabati, and D. Simeonidou, “End-
to-End Performance-Based Autonomous VNF Placement With Adopted
Reinforcement Learning,” IEEE Transactions on Cognitive Communi-
cations and Networking, vol. 6, no. 2, pp. 534–547, Apr. 2020.

[24] W. Mao, L. Wang, J. Zhao, and Y. Xu, “Online Fault-tolerant VNF
Chain Placement: A Deep Reinforcement Learning Approach,” in 2020
IFIP Networking Conference (Networking), Jun. 2020, pp. 163–171.

[25] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” arXiv:1509.02971 [cs, stat], Jul. 2019. [Online]. Available:
http://arxiv.org/abs/1509.02971

[26] O. Nachum, M. Norouzi, K. Xu, and D. Schuurmans, “Bridging the gap
between value and policy based reinforcement learning,” in Proceedings
of the 31st International Conference on Neural Information Processing
Systems, ser. NIPS’17. Red Hook, NY, USA: Curran Associates Inc.,
Dec. 2017, pp. 2772–2782.

[27] J. Rabault, M. Kuchta, A. Jensen, U. Réglade, and N. Cerardi, “Artificial
neural networks trained through deep reinforcement learning discover
control strategies for active flow control,” Journal of Fluid Mechanics,
vol. 865, pp. 281–302, Apr. 2019.

[28] E. Bøhn, E. M. Coates, S. Moe, and T. A. Johansen, “Deep
Reinforcement Learning Attitude Control of Fixed-Wing UAVs Using
Proximal Policy Optimization,” in 2019 International Conference on
Unmanned Aircraft Systems (ICUAS), Jun. 2019, pp. 523–533. [Online].
Available: http://arxiv.org/abs/1911.05478

[29] H. Tang, J. Rabault, A. Kuhnle, Y. Wang, and T. Wang, “Robust active
flow control over a range of Reynolds numbers using an artificial
neural network trained through deep reinforcement learning,” Physics

of Fluids, vol. 32, no. 5, p. 053605, May 2020. [Online]. Available:
https://aip.scitation.org/doi/10.1063/5.0006492

[30] S. Huang and S. Ontañón, “A Closer Look at Invalid Action Masking
in Policy Gradient Algorithms,” arXiv:2006.14171 [cs, stat], Jun. 2020.
[Online]. Available: http://arxiv.org/abs/2006.14171

[31] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,
A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani,
S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala,
“PyTorch: An imperative style, high-performance deep learning
library,” in Advances in Neural Information Processing Systems
32, H. Wallach, H. Larochelle, A. Beygelzimer, F. dAlché-Buc,
E. Fox, and R. Garnett, Eds. Curran Associates, Inc., 2019,
pp. 8024–8035. [Online]. Available: http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf

[32] M. Coggan, “Exploration and exploitation in reinforcement learning,”
Research supervised by Prof. Doina Precup, CRA-W DMP Project at
McGill University, 2004.

[33] M. A. Salido and F. Barber, “How to Classify Hard and Soft Con-
straints in Non-binary Constraint Satisfaction Problems,” in Research
and Development in Intelligent Systems XX, F. Coenen, A. Preece, and
A. Macintosh, Eds. London: Springer, 2004, pp. 213–226.

[34] E. Bisong, “Google Colaboratory,” in Building Machine Learning and
Deep Learning Models on Google Cloud Platform: A Comprehensive
Guide for Beginners, E. Bisong, Ed. Berkeley, CA: Apress, 2019, pp.
59–64. [Online]. Available: https://doi.org/10.1007/978-1-4842-4470-8\
\ 7

[35] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and
N. Dormann, “Stable-Baselines3: Reliable Reinforcement Learning
Implementations,” Journal of Machine Learning Research, vol. 22,
no. 268, pp. 1–8, 2021. [Online]. Available: http://jmlr.org/papers/v22/
20-1364.html

[36] “Open Source Cloud Computing Infrastructure.” [Online]. Available:
https://www.openstack.org/

[37] A. Kanso, N. Deixionne, A. Gherbi, and F. F. Moghaddam, “Enhancing
OpenStack Fault Tolerance for Provisioning Computing Environments,”
in 2017 IEEE 18th International Symposium on High Assurance
Systems Engineering (HASE). IEEE, 2017. [Online]. Available:
https://dx.doi.org/10.1109/hase.2017.27

[38] P. K. Prameela, P. Gadagi, R. Gudi, S. Patil, and D. G. Narayan, “Energy-
Efficient VM Management in OpenStack-Based Private Cloud,” in Ad-
vances in Computing and Network Communications, ser. Lecture Notes
in Electrical Engineering, S. M. Thampi, E. Gelenbe, M. Atiquzzaman,
V. Chaudhary, and K.-C. Li, Eds. Singapore: Springer, 2021, pp. 541–
556.

[39] F. F. Moges and S. L. Abebe, “Energy-aware VM placement
algorithms for the OpenStack Neat consolidation framework,” Journal
of Cloud Computing, vol. 8, no. 1, 2019. [Online]. Available:
https://dx.doi.org/10.1186/s13677-019-0126-y

[40] B. Karacali and J. M. Tracey, “Experiences evaluating OpenStack
network data plane performance and scalability,” in NOMS 2016 -
2016 IEEE/IFIP Network Operations and Management Symposium.
IEEE, 2016. [Online]. Available: https://dx.doi.org/10.1109/noms.2016.
7502923


