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Abstract—Optimizing resource allocation in Network Func-
tions Virtualization (NFV) deployment remains a challenging
problem due to the complex interactions between network
functions and the limited resources available at the network
edge. Deep reinforcement learning (DRL) has achieved impressive
results in a variety of domains. This paper presents EdgeGym, a
reinforcement learning environment to simulate the edge network
contexts and constraints for NFV resource allocation. EdgeGym
allows researchers and practitioners to evaluate and compare
different reinforcement learning algorithms for optimizing the
allocation of resources in NFV environments, taking into account
various constraints such as affinity policies and maximum latency.
We demonstrate the effectiveness of EdgeGym through extensive
experiments on training and action masking efficiency. EdgeGym
provides a reliable framework for advancing the DRL agent
performance in NFV resource allocation and paves the way for
further research in this area.

Index Terms—Resource Allocation, NFV, Deep Learning, Re-
inforcement Learning Environments, Gym

I. INTRODUCTION

Network Function Virtualization (NFV) enables network
operators to accelerate the deployment of new virtual de-
vices in a more dynamic approach that leads to building
a software-based network to reduce operating expenses and
capital expenses. With the growth of edge computing and
cloud computing, software-based virtual network functions
(VNFs) can be deployed on edge servers close to end users
to support a comprehensive range of new services with high
bandwidth and low latency. However, one of the main chal-
lenges in deploying NFV is provisioning VNFs with sufficient
resources on edge servers without compromising network
quality of service (QoS) and Service-Level Agreement (SLA).
Resource allocation optimization is widely recognized as an
NP-hard problem [1]–[3] in the telecommunication operation
and maintenance area, which is nontrivial to address in a
complex network as it involves a vast number of optimization
variables resulting from the multidimensional space of network
component parameters and states. Fig. 1 illustrates a typical
NFV Infrastructure (NFVI) architecture and demonstrates that
the NFVI contains a wide variety of resource types and
stakeholders. Accordingly, determining the optimal resource
allocation is an important and challenging problem to examine
in edge computing and cloud computing.

Fig. 1: A typical NFVI architecture comprises a wide variety
of resource types and stakeholders.

Reinforcement Learning (RL) is a machine learning tech-
nique for the process of making informed decisions by learning
from experience. The introduction of deep neural networks
made deep reinforcement learning (DRL) possible to process
high-dimensional inputs without the need for hand-crafted
feature representations. Deep reinforcement learning has ap-
parent benefits in resource allocation, which can exhibit a fast
execution time than search-based approaches and comprehen-
sively learn the problem structure while expanding the learning
capacity. In addition, the trained models are effortless to use
and deploy in a distributed manner, and the inference process
can be accelerated by existing hardware (e.g., graphics card).

OpenAI Gym [4] provides a standardized toolkit for devel-



oping and comparing reinforcement learning algorithms with
a common interface. It allows for direct comparison between
RL algorithms and assessment of generalization performance.
It also provides a unified interface to convert any arbitrary task
into a custom Gym environment.

In this context, this paper presents EdgeGym, a novel envi-
ronment focused on constraint-aware NFV resource allocation
for the training and evaluating reinforcement learning agents
and algorithms while compliant with the European Telecom-
munication Standards Institute (ETSI) NFV specification [5].

The contribution in this paper can be summarized as fol-
lows:

1) We formulate a Markov decision process (MDP) to
describe the NFV resource allocation problem in a
reinforcement learning environment.

2) We present an ETSI-compliant framework to build, train
and evaluate RL agents and algorithms for NFV resource
allocation research.

3) We propose a set of methods to implement various
constraints in the production environment.

The remainder of this article is organized as follows. Section
II addresses the related work. Section III briefly describes
RL and resource allocation and presents the theoretical basis.
Section IV details the architecture design, internal compo-
nents, and agent development. Finally, Section V concludes
this article and discusses future research.

II. RELATED WORK

In recent years studies and research on the resource alloca-
tion and VNF placement problem have become a hot issue in
academia and industry. Typically this problem is categorized
as a resource management problem in NFV systems [6]. In
order to achieve some specific optimization objectives such
as minimizing the number of occupied servers and end-to-
end latency, some mathematical programming methods such as
Binary Integer Programming (BIP) [3], [7], [8], Integer Linear
Programming (ILP) [9]–[12], and mixed ILP (MILP) [13]–[16]
are extensively used. However, since the resource allocation
problem isNP-hard [17], it is challenging to efficiently search
for optimal solutions, particularly in large-scale networks
with a large action space. For this reason, heuristic solutions
are typically proposed with near-optimal results but a short
running time [18], while constraint programming methods are
proposed with an optimal guarantee but a prohibitive execution
time [19].

Nevertheless, we identified some works which focused
on utilizing machine learning to solve the NFV resource
allocation and VNF placement problem. To the best of our
knowledge, there are no frameworks that help researchers and
engineers efficiently design, train, and evaluate RL agents to
optimize the NFV resource allocation with consideration of
constraints.

Wang et al. [20] introduced a k-nearest neighbor (k-NN)
supervised learning classifier to solve the resource allocation
problem. Xiao et al. [21] presented a policy gradient based
adaptive DRL approach to acquire dynamic network state

transitions and optimize the deployment of service function
chains (SFCs). Pei et al. [22] presented a Double Deep Q
Network based off-policy DRL algorithm to determine the
optimal VNF placement solution. Sun et al. [23] proposed
a data-driven method to combine DRL and Graph Neural
Networks (GNN) to solve the VNF placement problem. Su
et al. [24] proposed a policy gradient based DRL approach to
make optimal allocation decisions.

Our work can set up an RL gym for any definition data
compatible with the ETSI NFV standard and delivers a fully
customizable environment. Experimental RL agent policies
and algorithms can be implemented and examined using
EdgeGym. A stochastic baseline agent is also included for
preliminary comparison.

III. PRELIMINARIES

This section introduces the notation and formalizes the
concept of reinforcement learning for NFV resource allocation,
the action selection and evaluation for agent training, and
constraints of latency and affinity.

A. Reinforcement Learning and Resource Allocation

The regular formalization of RL contains six key elements:
agent, observation, action, state, environment, and reward.
The agent performs an action upon observation, and the
environment feedbacks a reward and new state resulting from
that action. We defined them in the NFV resource allocation
context as follows:

Agent: The agent makes resource allocation decisions as
actions. It works like the OpenStack scheduler [9] in some
ways. Fig. 2 demonstrates the agent acquiring information
from VM and NFVI constraints and then making resource
allocation decisions to NFV Management and Orchestration
(MANO) for actual scheduling.

Fig. 2: Involved entities and constraints for DRL agent.



Observation: The observation reflects what the agent ob-
serves from the current state of the environment. It will include
current virtual machine (VM) demands and NFVI topology as
supporting information for the agent.

Action: The actions are a set of all possible moves the
agent can make at any given time point. Assigning a VM to
a compute host (CH) is an action.

State: The state denotes the solid and present status of
the agent in the environment, like the currently placed VMs,
and the available computing resources. It is highly related
to observation, but a state can be either partially or fully
observable.

Environment: The environment is where the agent exe-
cutes actions and where states and rewards are computed. In
EdgeGym, NFVI topology and VM arrival queue form the
environment.

Reward: The reward is the feedback that measures how the
action succeeds or fails. In EdgeGym, the reward of action is
mainly impacted by latency impact, soft constraint satisfaction,
and hard constraint violation.

In summary, taking action causes a state transition, after
which the agent receives observations and a reward. The
overall objective for such a system is to learn a policy π, which
is a means to choose an action at any given state in order to
maximize the expected reward over a certain period of time.
The policy samples an action a ∈ A at state s according to
π(a | s) as a resource allocation decision to NFV MANO.

B. Latencies and Affinities

Latency in EdgeGym is measured as hops. A hop is defined
as a data packet transmitted from one entity to the next. The
VM latency is the maximum communication hops to all other
VMs under the same VNF defined in Equation (1). A lower
communication overhead means lower latency and leads to
compact placement in terms of physical distance, thus achiev-
ing maximum system capacity and reducing energy costs. An
efficient resource allocation decision seeks to minimize the
overall VM communication overhead within each VNF. For
this reason, as shown in Equation (2), the VNF latency is
determined by the highest VM latency for all VMs under this
VNF.

latencyvmi = max(
[
latencyvmivmj for vmj ∈ V NFvmi

]
)

(1)

latencyvnfi = max([latencyvmi
for vmi ∈ vnfi]) (2)

Affinity indicates that all the instances in this scope must
be assigned to the same containers, and anti-affinity indicates
that no instances in the scope can be placed on the same
container. In this context, the instances refer to VMs, the scope
refers to network service (NS), and the container refers to a
compute host or a data center. As a result, each VM will
have corresponding attributes ch policy and dc policy for
fine-grained control. The possible values of a policy attribute

is defined in Equation (3). If a policy attribute is unset,
it indicates there is no affinity enforcement for the related
container in the scope.

policy =


1, affinity
2, anti-affinity
0, unset.

(3)

C. Action Selection and Evaluation

We categorized resource occupancy, maximum latency tol-
erance, and affinity policies as hard constraints, which are
the hard limitations that cannot be broken. In contrast, soft
constraints like network services distance minimization are
a less forcing nature that may be violated but as many as
possible should be satisfied. In EdgeGym, the hard constraints
are enforced by masking out [25] the ineligible action choices.
After applying the invalid action masking, the logit of the
impossible action are replaced with −∞ in which logit l is
the vector of unnormalized predictions.

To stimulate the agent to reduce the latency of all VMs
within the NS and avoid dispersed VM placements, we pro-
pose an approach that adds multi-stage weight penalties to
the rewards. The multi-stage VM-to-VM placement cases and
corresponding penalties are defined in Table I. A standalone
VNF is a VNF that does not belong to any NS. The VLINK
stands for a virtual link in this table which implies a physical
connection path.

TABLE I: Multi-Stage VM-to-VM Placement Penalty Defini-
tion

Case Penalty
No VLINK to same NS 0
Any VM inside standalone VNF 0
Have VLINK to same NS and inside same server 0
Have VLINK to same NS and inside same rack 1
Have VLINK to same NS and share aggregation switch 2
Have VLINK to same NS and inside same data center 4
Have VLINK to same NS but none of above satisfied 6

Consequently, the reward Ra for action a will be the
negative value of the sum of latencies and penalties for current
VM vma in Equation (4). Hence, lower penalties and lower
latency to all other VMs on the same VNF will result in a
higher reward value. For this reason, the agent will learn to
minimize the latency and place the VM near the sibling VMs
as close as possible.

Ra = −(
j<Nvnfvma∑

j=0

latencyvmavmj
+

∑
penaltyvma

) (4)

IV. METHODOLOGY

The following section will discuss the methodology behind
our work, including MDP simulation and system design, as
well as special workarounds for handling constraints.



A. MDP Simulation

The Markov decision process (MDP) [26] formally de-
scribes an environment for reinforcement learning. We model
the NFV resource allocation problem in EdgeGym as an MDP
tuple ⟨S,A,P,R, γ⟩.

In this context, S is a finite set of NFVI states while
the states include a representation of network topology and
available resources. A is a finite set of actions in which an
action is a resource allocation decision act by the agent. In an
MDP, an agent is the entity training to make correct decisions.
At a time step t, it observes from the environment state st ∈ S
and chooses from a finite set of actions at ∈ A.

Besides, P is a state transition probability matrix while the
current state depends only on its immediate previous state
as Pa

ss′ = P [St+1 = s′ | St = s,At = a]. The environment
transforms following a dynamics p : S × S × A → [0,∞)
defining the probability density of the next state. Moreover,
R is a reward function that Ra

s = E [Rt+1 | St = s,At = a].
Eventually, the environment sends a feedback reward as r :
S ×A → [0, 1].

The ultimate goal of the agent is to maximize the cumulative
reward, i.e., maxE

[∑T
t=0 γ

tr (st, at)
]
, where γ is a discount

factor to account for delayed rewards and γ ∈ [0, 1]. In these
circumstances, this formulation is simplified by focusing on
the problem with immediate rewards. Hence the delay will
not be considered.

B. System Design

The recent breakthroughs in integrating deep neural net-
works with RL have been made possible by the availability of
massive quantities of simulated data for learning by various
algorithms. Simulated environments in which RL algorithms
can learn from a virtually unlimited data source are becoming
essential for creating cutting-edge algorithms. However, little
work has been done to date on designing an RL environment
specifically for training and evaluating resource allocation in
NFV-enabled networks. For this reason, our work will focus on
designing and implementing such an environment. We propose
a gym-based environment specifically for the task of resource
allocation and VNF placement. In summary, the EdgeGym
consists of the following components:

• Preprocessing: parse the input NFVI topology data in
JSON [27] or TOML [28] format and preprocesses the
data in the proper format for numericalization.

• Numericalization: receives the preprocessed data and
generates the action and state space. Preload the data
and render caches like server hops table for training
acceleration.

• Action Space: analyze the compute hosts and generate the
discrete action space.

• Observation Space: sets the available states of the re-
source occupancy with related contextual knowledge.

• Reward Function: a predefined and configurable function
for the rewards and penalties that the environment will
feedback the agent for its actions.

• Edge Core: the principal component that plays that in-
teracts with the agent as the environment. It obtains the
current state and observations, receives the actions from
the agent, and sends the feedback in accordance with
the reward function. The core also records statistics and
historical information such as step rewards and latencies.

Furthermore, the EdgeGym includes these main procedures:
• Initialization: initializes the empty occupancy state or re-

stores from a previously saved allocation state. Initializes
all entities with their initial state and builds the action
and observation space.

• Step: perform the resource allocation decision, calculate
and feedback rewards and the next state to the agent.

• Reset: invert all the performed resource allocation actions
and revert the occupancy state to the initial status.

Besides, EdgeGym has a built-in stochastic baseline agent
for comparison when developing a new agent policy or algo-
rithm. This agent randomly selects the assigned compute host
for the incoming VM without learning from the interactions.

C. VM Arrival Queue

In a modern telecommunication cloud, VNFs are formed by
groups of single or interconnected virtual machines (VMs).
Depending on demands, one or several VMs will arrive at
the time step t. EdgeGym maintains a VM arrival queue to
manage the sequential arrival while implementing the QoS and
SLA provision. Each VM will be assigned a priority attribute
to determine its queue position. The priority value can be
calculated on the basis of the QoS and SLA requirements or
the arrival sequence. Fig. 3 depicts the EdgeGym environment
and agent observation.

At each timestep, the agent observes the current VM and
NFVI state and then makes a resource allocation action
decision. The EdgeGym receives this action and calculates a
reward value using the reward function. The agent learns from
the reward and updates the policy to maximize future expected
rewards.

D. Server Hops Table

An objective of EdgeGym is to obtain an efficient placement
of network services and routing of the VM communication
flows without violating the constraints of the maximum re-
source capacity of the compute hosts and tolerable latency
of VMs and VNFs. Since we define VM latency as the
maximum communication latency to all other VMs in the same
VNF. The VM-to-VM communication latency can be in four
cases depending on their position relationship: Inside Server,
Inside Rack, Share AS, and Cross DC. Fig. 4 demonstrates the
corresponding flow path and latency in terms of hops.

Each VM has a vm max ltcy attribute that specifies the
maximum latency that can be tolerated. Any VM latency that
exceeds its vm max ltcy value in a placement result means that
the placement violates the max latency constraint and is thus
infeasible. The latency of a VNF is obtained by calculating the
maximum latency for all of its VMs. Similarly, VNFs have a



Fig. 3: The EdgeGym integrates both NFVI structure and VM
arrival queue to generate agent observation.

Fig. 4: Flow path and latency in terms of hops in different
scenarios.

vnf max ltcy property in which all feasible VM placement
results need to satisfy this inherited constraint.

One challenge in EdgeGym is efficiently determining the
VM latency to calculate the rewards. Given the fact that the
NFVI environment can be considered to be not constantly
changing since it is a virtual mapping of physical hardware,
we developed a mechanism to generate a server hops table for
fast lookup at the environment initialization phase, as shown
in Algorithm 1.

Algorithm 1: Server Hops Table Generation
Result: server hops, server hops table as 2-D tensor
Data: servers
server hops← [];
forall s1 ∈ servers do

hops← [];
forall s2 ∈ servers do

if s1.id = s2.id then
hops.append(1)

else if s1.tor id = s2.tor id then
hops.append(2)

else if s1.as conn & s2.as conn then
hops.append(4)

else
hops.append(6)

end
end
server hops.append(hops)

end

Each entity will be assigned a universally unique identifier
attribute id and an entity-wise unique sequence number seq in
the data preprocessing stage. The algorithm checks the equality
of server id and rack id to determine Inside Server and Inside
Rack status. Each server will have a Nas length binary bits
array as conn representing aggregation switch connection in
numerical shape while Nas is the number of total aggregation
switches in the environment. Each bit corresponds to the link
with the aggregation switch of the corresponding sequence,
and value 1 implies there is a link, while value 0 indicates
no connection. By performing binary AND (&) operations on
the as conn properties of the two servers, we can quickly
establish whether they are in a Share AS state. The calculation
of the reward function can be significantly accelerated by
lookup this server hops table.

V. EVALUATION AND ANALYSIS

The EdgeGym provides a stochastic baseline agent while
this agent will sample the actions from the masked-out action
space to enforce the constraints. In our evaluation settings, we
build a typical NFVI environment with two data centers while
each data center has two aggregation switches and three racks.
There are 18 servers with randomly generated configurations
and connections seated on the racks. Table II summarizes the
baseline agent evaluation settings. In the training process, the
EdgeGym will generate random VM demand within the given



configuration range. The invalid action which violates the max
latency and affinity constraints will be masked. Therefore
all the resource allocation decisions will satisfy the implicit
constraints.

TABLE II: Baseline Agent Evaluation Settings

Parameter Value
VIM Randomizer

n vim 3
n ch per vim 6
ch cpu range in cores [32, 64]
ch mem range in gb [128, 512]
ch net range in gb [1, 10]

VNF Randomizer
n min vnf 2
n max vnf 10
n standalone vnf −1
fixed vnf max latency 6
n min vm per vnf 1
n max vm per vnf 10
vm cpu range in cores [1, 16]
vm mem range in gb [4, 64]
vm net range in gb [1, 2]
fixed vm max latency 6
fixed ch policy 0
fixed dc policy 0

Evaluation Settings
total timestep 800, 000
log timestep interval 100

We evaluate the effectiveness in terms of training and action
masking. After introducing the constraints, the agent training
process should be in a reasonable time. We use timestep for the
training efficiency evaluation. One timestep is the minimum
unit of the agent making a resource allocation decision. The
action masking complexity depends on the number of VMs
since a more significant number of VMs also introduces
massive constraints. Therefore we use the number of VMs
for the action masking efficiency evaluation. Fig. 5 shows the
evaluation result conducted on a single NVIDIA Tesla V100
GPU for 800, 000 timesteps.

From the results, the EdgeGym completed 800, 000
timesteps within 3 minutes, which shows it will not be a
weakness for complicated agent training. The action masking
is also instantaneous and can be completed in single-digit
milliseconds.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents EdgeGym, a DRL framework to create
reproducible NFV environments for optimizing resource allo-
cation with reinforcement learning applications. It consists of
an OpenAI Gym, a set of mechanisms to enforce constraints,
and a stochastic agent for baseline purposes. The main aim
of this work is to narrow the gap between reinforcement
learning and NFV resource allocation research. We believe
that an intelligent reinforcement learning agent can benefit the
network operator in various aspects, such as energy-saving,
performance boost, and latency reduction. We would also like
to push the further research focus on RL agent optimization

(a) Training Efficiency: timesteps vs. wall time in second.

(b) Action Masking Efficiency: number of VMs vs. wall time in milliseconds.

Fig. 5: Evaluation results in terms of training and action
masking efficiency.

without ignorance of the constraints. We hope that EdgeGym
can motivate researchers in these critical directions.

The ongoing and future works on EdgeGym will introduce
Multi-Agent Reinforcement Learning (MARL) [29] integra-
tion. We expect MARL can open the possibilities for con-
necting different agent strategies. We are also interested in
extending the baseline agents set to implement more popular
algorithms like Proximal Policy Optimization (PPO) [30]
and Advantage Actor Critic (A2C) [31] for metrics analysis.
Lastly, we want to explore the integration with constraint
programming for efficient and intelligent resource allocation
decisions.
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