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Abstract—The evolution of the Network Function Virtualization
(NFV) paradigm has revolutionized the way network services
are deployed, managed, and scaled. Within this transformative
landscape, Virtual Network Function (VNF) resource prediction
emerges as a cornerstone for optimizing network resource allo-
cation and ensuring service reliability and efficiency. Traditional
resource forecasting methods often struggle to adapt to the dy-
namic and non-linear nature of changes in resource consumption
patterns in modern telecommunication networks. We address
this challenge by leveraging the inherent pattern recognition
and next-token prediction capabilities of Large Language Model
(LLM) without requiring any domain-specific fine-tuning. Our
study utilizes Llama2 as the foundation model to evaluate the
performance against widely used probability-based models on
a public VNF dataset that encompasses real-world resource
consumption data of various VNFs for comparative analysis. Our
findings suggest that LLM offers a highly effective alternative for
VNF resource forecasting, demonstrating significant potential in
enhancing network resource management.

Index Terms—NFV, VNF, Resource Prediction, Large Language
Model, Generative AI

I. INTRODUCTION

In the rapidly evolving landscape of network technology,
Virtual Network Functions (VNFs) have become a cornerstone
in the architecture of modern telecommunication systems. The
concept of VNF stems from the broader framework of Network
Functions Virtualization (NFV), which aims to decouple net-
work functions from proprietary hardware appliances, allowing
them to be hosted on standard server hardware as virtual
machines (VMs) or containers. This paradigm shift not only
enhances flexibility and scalability but also introduces com-
plexities in resource management and allocation. The quality of
network services is directly influenced by the ability to allocate
resources effectively. VNF resource forecasting plays a critical
role in maintaining high service quality and reliability. By
anticipating resource demands, it is possible to proactively scale
resources up or down, thereby avoiding service degradation or
interruptions. This not only ensures a consistent user experience
but also enhances the overall reliability of the network services.

VNF resource forecasting involves predicting the resource
usage of VNF instances to facilitate decision-making for auto-
matic adaptation of physical resources. This can trigger actions
such as horizontal scaling, vertical scaling, or migration re-
quests by NFV management and orchestration (NFV-MANO).

Accurate VNF resource usage prediction is an essential first
step in a VNF Resource Allocation (VNF-RA) pipeline [1].
This challenge is further compounded by the integration of
Software-Defined Networking (SDN), which introduces addi-
tional layers of abstraction and control over network resources.
Accurate prediction of VNF resource requirements is crucial
for optimizing the utilization of underlying physical resources.
By forecasting the resource needs of VNFs, network operators
can minimize underutilization and overprovisioning, leading to
significant cost savings and enhanced operational efficiency.
This predictive approach enables a more responsive and cost-
effective allocation of computing, storage, and networking
resources, which is essential in a highly dynamic NFV envi-
ronment.

Traditional time series forecasting models such as Autore-
gressive Integrated Moving Average (ARIMA) and Exponential
Smoothing (ETS) have been widely used for resource fore-
casting in the past [2]–[4]. ARIMA models aim to describe
the autocorrelations present within datasets, while ETS models
rely on delineating both the trend and seasonality in the data.
However, with the increasing complexity and dynamic nature
of network traffic, these traditional methods often struggle with
complex patterns seen in VNF resource usage, especially when
there are multiple overlapping cycles or trends. Therefore, many
research teams have been exploring Deep Learning techniques
like Long Short Term Memory (LSTM) [1], [5]–[7] and Deep
Reinforcement Learning (DRL) [8] to improve upon these
traditional mechanisms.

Recent advancements in Large Language Models (LLMs)
have opened new avenues for addressing these challenges.
The core mechanism powering these models is next-token
prediction, which enables them to anticipate the most likely
subsequent item in a sequence of data. Though primarily
developed for linguistic purposes, this ability has broader appli-
cations in various data-driven forecasting tasks. By analyzing
historical data and identifying patterns, these models can make
informed predictions about future resource requirements.

In the context of VNF resource forecasting, LLMs can be
utilized to analyze and predict network resource requirements.
By appropriately tokenizing the VNF resource consumption
data, these models can leverage their next-token prediction
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capabilities to forecast future resource needs more accurately
and efficiently than traditional methods. This approach not
only harnesses the advanced predictive capabilities of LLMs
but also aligns with the dynamic and automated nature of
NFV and SDN environments. Our study leverages pre-trained
foundation models (PFMs) for VNF resource forecasting. These
models have been trained on vast datasets, encompassing a wide
range of knowledge domains, which enables them to generate
predictions with a high degree of accuracy and relevance. The
next-token prediction ability of LLMs is particularly beneficial
for forecasting tasks, as it allows the models to extrapolate
future states from sequential data. Llama2 is an open-source
LLM that includes model weights for pre-trained and fine-tuned
language models, ranging from 7 billion to 70 billion parame-
ters. It is one of the state-of-the-art LLM and outperforms other
open-source language models on many external benchmarks,
including reasoning, coding, proficiency, and knowledge tests
[9].

This paper aims to explore the application of pre-trained
LLMs for effective VNF resource forecasting. We delve into
how the generative abilities of these models, rooted in next-
token prediction, can be adapted to the unique challenges of
forecasting in NFV and SDN contexts. We explore the chal-
lenges and opportunities presented by this innovative approach,
aiming to demonstrate its efficacy in enhancing the operational
efficiency of telecommunication networks. Consequently, we
aim to provide a novel perspective on optimizing network
function virtualization through the lens of advanced generative
AI methodologies.

II. METHODOLOGY

A. Problem Analysis and Modeling

In an NFV environment, {xt}t∈Z with xt ∈ Rn denotes
the historical resource consumption data known up to the
current time t. The VNF resource forecasting task is finding a
prediction function g to predict a given length of future resource
consumption {x̂t} begins at t + 1 as x̂t+∆t = g (xt,∆t). This
work uses the LLM next-token prediction ability as the function
g for resource consumption forecasting.

Fig. 1 depicts an example of integrating LLM for future VNF
resource forecasting in the NFV environment. The NFV-MANO
can thereby make informative allocation decisions to ensure
efficient resource utilization. In this workflow, the serializer will
preprocess the collected VNF resource historical consumption
data {xt} for further processing. The objective of preprocessing
is to ensure a uniform distribution and consistent format of the
data. It will also serialize the signedness, radix, and separation
mark of the incoming data. The data are then passed through
an encoder, which processes the input in preparation for the
transformer block. The encoder will create a string representa-
tion of the input. After that, the input string will be tokenized
and broken down into tokens that the model can understand.
The tokens in LLM are often numerical representations of
words or characters. After tokenization, the tokens will be
embedded into vectors of continuous values. These vectors are

Fig. 1. A high-level overview of integrating LLM for future VNF resource
forecasting for efficient services orchestration.

designed to capture more information about the tokens, such as
their meanings, semantic relationships, and their context within
the text. Each token is initially represented by an integer, as
determined by the tokenization process. For each token, its
integer identity is used to look up its vector in the embedding
matrix. This vector is a dense representation with real numbers,
capturing the semantic properties of the token.

Current LLMs widely adopt Generative Pre-trained Trans-
former (GPT) for next-token prediction and generation. GPT
models are built on the Transformer architecture [10], which
employs the multi-head attention mechanism. Fig. 2 illustrates
the text generation process of LLMs. The workflow starts
with the input text, which undergoes tokenization. During this
step, each word is converted into a unique integer token. The
final output is a vector representing the likelihood of each
candidate token being the next word. Finally, the token with
the highest probability is typically selected as the next word in
the generated text. These steps are recursively called until an
end-of-sequence token occurs.

Fig. 2. Example of large language models for text generation.

In the proposed framework, the model initially computes
output probabilities for subsequent tokens. Utilizing its trained
probability distributions, it selects the token with the highest
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likelihood as the next output. This token is subsequently
reintegrated into the model as input, facilitating the prediction
of further tokens. The sequence of predicted tokens under-
goes a detokenization and decoding process, ultimately being
transformed into a deserialized representation of anticipated
VNF resource utilization {x̂t}. Fig. 3 presents the flow of
an LLM employed for VNF resource consumption forecasting.
The process starts with input data consisting of numerical val-
ues representing resource consumption metrics. These metrics
undergo serialization and are converted to a string format with
configured base and precision. The serialized data are then
encoded with specified numbers and data entity separators.
The data are then tokenized, and each digit is assigned a
unique token identity. The LLM ingests these token identities,
producing logits representing the raw predictions for the next
possible values. The higher the logit, the higher the confidence
in the corresponding token being the appropriate next value
in the sequence. A softmax layer converts these logits into
probabilities, signifying the likelihood of each predicted out-
come. This process ultimately outputs a probability distribution
for the next predicted resource consumption values, aiding
in forecasting future VNF resource requirements. These steps
are recurrently invoked until the specified forecast horizon is
fulfilled.

Fig. 3. Workflow of large language models for VNF resource forecasting.

B. Open-source LLMs
In the rapidly evolving field of LLMs, the advent of open-

source models like Llama2 marks a pivotal shift. These models
are critical in democratizing access to advanced AI technolo-
gies. Open-source LLMs offer transparent and collaborative
development pathways, enabling a more comprehensive range
of researchers and developers to contribute to and scrutinize
the technology.

Llama2, developed by Meta AI in 2023 [9], stands out as
a noteworthy example. It builds upon the foundation laid by
its predecessor Llama1, offering improved performance and
scalability. Notably, Llama2 is designed to match or even
surpass the proficiency of leading closed-source models in
certain domains. This is achieved through a combination of
extensive pre-training on diverse and large text corpora and
advanced fine-tuning techniques. The model comes in three
sizes (7B, 13B, and 70B parameters) catering to different
computational needs and applications.

The pre-training process for Llama2 involves self-supervised
learning on a vast dataset comprising two trillion tokens.
This foundational training equips the model with a broad
understanding of language and context. Following this, Llama2
undergoes a fine-tuning process using a blend of supervised
learning and Reinforcement Learning from Human Feedback
(RLHF). This stage incorporates human-annotated examples
and instructional datasets, refining the model’s capabilities
in dialogue and specific task performances. Incorporating the
potential of Llama2 for resource consumption prediction adds
another layer of utility to this open-source LLM. While LLMs
like Llama2 are primarily designed for understanding and
generating human language, their underlying capabilities can be
adapted for various specialized tasks, including VNF resource
forecasting.

VNF resource forecasting involves analyzing sequential data
points, often collected over time, to forecast future values.
LLMs can be instrumental in this domain due to their pro-
ficiency in pattern recognition and sequence prediction. In this
work, we will utilize Llama2 as the foundation model and
evaluate all its different size variants.

C. Zero-shot Forecasting

Zero-shot involves applying the LLM to a forecasting task
without any task-specific training. The LLM relies solely on
its pre-existing knowledge and understanding gained during its
initial training phase.

LLM and GPT have been demonstrated as zero-shot time
series forecasters in the work of Gruver et al. (2023) [11]. Our
approach was inspired by this work, particularly their inno-
vative zero-shot forecasting approach. While adhering to the
basic structure proposed by them, our model uniquely applies
tokenization techniques to network data patterns., offering new
insights into VNF resource forecasting.

Particularly pertinent in the NFV domain, where network
conditions and requests are highly variable due to fluctuating
user demands, zero-shot forecasting presents a valuable tool for
predicting resource requirements in previously unseen scenar-
ios, thereby circumventing limitations inherent in the training
phase.

III. EVALUATION

A. Datasets

We are using a public VNF dataset from Knowledge-Defined
Networking (KDN) [12] with CPU consumption of read-world
VNFs when operating under real traffic for the evaluation. The
original dataset provided a MATLAB loading program for each
category. We are using the same procedure to load the data
into Python. This dataset used Open Virtual Switch (OVS) and
Snort as network components. OVS is a widespread virtual
switch implementation [13], and Snort is effective for network
intrusion detection in SDN [14]. This dataset consists of three
categories of VNFs as follows:

1) OVS: CPU consumption of an OVS connected to an SDN
controller functioned as an SDN-enabled switch. This category
consists of 1153 data points after being loaded.
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2) Firewall: CPU consumption of an OVS configured with
firewall rules operated as an SDN-enabled firewall. This cate-
gory consists of 560 data points after being loaded.

3) Snort: CPU consumption of a Snort with the initial
configuration. This category consists of 604 data points after
being loaded.

These VNFs were deployed as VMs with two additional VMs
connected via gigabit links for traffic generation and reception.
Network traffic was sourced from a campus network serving
approximately 30, 000 users, and the data was captured in 20-
second intervals.

In our evaluation, we partitioned each dataset into two
distinct subsets: a training set and a validation set. This was
done in an 80 : 20 ratio, adhering to standard machine learning
model validation practices. The training set, comprising the
first 80% of the data, was utilized for model fitting, allowing
them to learn the patterns and seasonalities. The remaining
20%, designated as the validation set, served to evaluate the
model’s performance on unseen data, ensuring generalizability
and robustness.

B. Baselines

In this evaluation, we use ARIMA, ETS, and Theta, three
prominent models in the realm of time series forecasting, as
baselines to evaluate the performance for comparison. ARIMA,
an integration of autoregressive and moving average models, is
adept at capturing a wide range of time series data structures,
making it the most general class of models for forecasting
a time series and comparable with deep neural network ap-
proaches [15]. ETS, on the other hand, extends exponential
smoothing to capture trends and seasonality more effectively
and has been demonstrated to be effective and recommended
for cellular traffic prediction [16]. The Theta method has
gained attention due to its simplicity and superior forecasting
accuracy. It has been confirmed by many empirical studies and
forecasting competitions to perform well [17].

For the implementation, we use AutoARIMA, AutoETS,
and AutoTheta from the StatsForecast framework [18], which
are automated versions of their respective forecasting models.
These automated models are designed to streamline the process
of model selection and hyperparameter tuning, which are
crucial for achieving maximum performance.

C. Evaluation Metrics

In the realm of forecasting, it is imperative to employ robust
and reliable metrics to evaluate the accuracy and effective-
ness of predictive models. We select Mean Absolute Error
(MAE), Mean Squared Error (MSE), Root Mean Squared Error
(RMSE), and Mean Absolute Percentage Error (MAPE) as the
evaluation metrics, which are widely recognized and utilized
for this purpose.

In evaluating these metrics, a lower value indicates better
model performance for all four metrics. By examining these
metrics collectively, we aim to provide a comprehensive as-
sessment of the forecasting performance, capturing different
aspects and impacts of forecasting errors.

D. Effectiveness Analysis

During the evaluation phase, the AutoARIMA, AutoETS,
and AutoTheta models maintained their default hyperparame-
ters. Each Llama2 variant was set with a consistent temperature
hyperparameter of 1.0. Furthermore, in the prediction process,
the number of samples was fixed at 5 for both statistical
and LLM models, facilitating the quantification and capture
of intrinsic uncertainty in the forecasts.

The forecasting results compared to the validation dataset are
shown in Fig. 4, and Table I details the benchmarking results
across all models. The dataset length reveals that the OVS
dataset is approximately double the size of both the Firewall
and Snort datasets, consequently leading to a prediction length
that is also twice as long for OVS. We made three key
observations: 1) LLM-based models demonstrate outstanding
forecasting accuracy compared to statistical models. LLMs
benefit from their ability to leverage large-scale data during
training, enabling them to capture complex patterns and depen-
dencies often missed by statistical approaches. 2) Smaller LLM
models exhibit reduced capability in long-term forecasting
compared to larger models. This performance degradation can
be attributed primarily to the reduced parameter counts, which
constrain their ability to capture and model the extensive and
intricate patterns necessary for accurate long-term predictions.
3) Although larger models are typically expected to learn and
represent complex data patterns better, the 70B model exhibits
inferior performance compared to the 7B and 13B models,
specifically in the Firewall and Snort datasets. This unexpected
behavior of the 70B model could be attributed to alignment
interventions such as RLHF during pre-training. While aimed
at improving model safety and alignment with human values,
these interventions may inadvertently prioritize certain types of
data handling or response patterns that do not align well with
the general type of forecasting tasks.

In summary, our analysis indicates that LLM models, partic-
ularly the moderate size (i.e., 13B), offer balanced forecasting
accuracy, computational efficiency, and adaptability.

IV. CONCLUSIONS AND FUTURE WORK

This paper has demonstrated the viability of using a pre-
trained LLM, specifically Llama2, for zero-shot VNF resource
forecasting within NFV and SDN environments. Our evalua-
tion indicates that Llama2, despite not being fine-tuned, can
effectively predict resource requirements due to its substantial
next-token prediction ability, potentially surpassing traditional
forecasting methods in accuracy and efficiency. This approach
offers a promising new direction for network resource manage-
ment, leveraging the advanced capabilities of LLMs to handle
the complexities of modern network traffic.

For future work, we aim to explore the integration of
LLM with real-time network management systems for dynamic
resource allocation. Another area of interest is refining data
preprocessing and encoding methods to enhance prediction
accuracy further. Besides, extending this approach to other
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Fig. 4. Comparison among actual validation dataset and forecasting results.

TABLE I
VNF RESOURCE FORECASTING TASK ON KDN DATASET.

OVS Firewall Snort Avg.

MAE MSE RMSE MAPE MAE MSE RMSE MAPE MAE MSE RMSE MAPE MAE MSE RMSE MAPE

Llama2-7B 79.87 15378.76 124.01 42.70 17.83 658.38 25.66 11.98 13.18 503.41 22.44 9.09 36.96 5513.52 57.37 21.25
Llama2-13B 26.53 2384.19 48.83 15.02 18.26 682.35 26.12 12.23 13.25 540.10 23.24 9.18 19.35 1202.21 32.73 12.14
Llama2-70B 22.68 752.15 27.43 12.79 19.65 750.58 27.40 13.03 13.55 542.02 23.28 9.32 18.63 681.59 26.03 11.71

AutoARIMA 24.34 1138.38 33.74 14.50 21.75 826.50 28.75 13.32 21.36 910.83 30.18 12.83 22.49 958.57 30.89 13.55
AutoETS 28.61 1350.08 36.74 15.89 21.88 918.47 30.31 13.78 19.26 771.32 27.77 12.09 23.25 1013.29 31.61 13.92
AutoTheta 27.37 1286.07 35.86 15.31 20.77 852.25 29.19 13.22 19.61 790.79 28.12 11.81 22.58 976.37 31.06 13.45

aspects of network management, such as resource consumption
anomaly detection, could yield significant benefits.
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